
TRANSCRIBING VOCAL EXPRESSION FROM POLYPHONIC MUSIC

Yukara Ikemiya, Katsutoshi Itoyama, Hiroshi G. Okuno

Graduate School of Informatics, Kyoto University, Japan

ABSTRACT

A method for transcribing vocal expressions such as vibrato,
glissando, and kobushi separately from polyphonic music is
described. The expressions appear as fluctuation in the fun-
damental frequency contour of the singing voice. They can
be used for search and retrieval of music and for expres-
sive singing voice synthesis based on singing style since they
strongly reflect the individuality of the singer. The fundamen-
tal frequency contour of the singing voice is estimated using
the Viterbi algorithm with limitation from a corresponding
note sequence. Next, the notes are aligned with the fundamen-
tal frequency sequence temporally. Finally, each expression is
identified and parameterized in accordance with designed rules.
Experiments demonstrated that this method can transcribe ex-
pressions in the singing voice from commercial recordings.

Index Terms— Singing voice analysis, Vocal expression
identification / transcription, F0 estimation.

1. INTRODUCTION

Every singer has a unique singing style, which characterizes
his or her singing. The goal of our study is to create a library of
singing styles that can be applied to consumer-generated me-
dia (CGM) and music information retrieval (MIR) [1]. Such
a library will enable us the singing style of favorite singers to
be transferred to singing voice synthesis systems, such as the
Vocaloid [2], and the retrieval of songs based on singing style.
A demonstration of singing-style transfer is available on-line 1.

While some systems have been aimed at making synthe-
sized singing voices more human-like by adding pitch fluctua-
tions [3, 4, 5], they do not take into account singer individuality.
Singing voice synthesis systems based on the hidden Markov
model (HMM) [6, 7, 8] learn singing style as the feature vec-
tors of HMM; however, it is difficult to create a singing style
library for various singers since such a library requires many
sets of the singing voices and corresponding scores for learn-
ing. Although a statistical model of fundamental frequency
(F0) contour of singing voices was proposed [9], the model
parameters distinguish only whether the generated fluctuations
exist in the change between two consecutive notes or on a note.
Some studies aim to transcript particular characteristics from
singing voice F0 contour [10, 11].

1winnie.kuis.kyoto-u.ac.jp/members/ikemiya/demo/sst2013.html
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Fig. 1: Vocal expressions.

While existing systems use only the singing voice for input,
we target polyphonic music since users would naturally want to
analyze commercial recordings. We break down singing style
into parameters to use for singing style transfer or retrieval. In
this paper, we present a method for transcribing vocal expres-
sions (vibrato, kobushi, and glissando) separately. Figure 1
shows a typical template for each expression. Kobushi is short
tremolo that appears in Japanese folk songs such as enka or
min-yo. Glissando is generally separated into two types: gliss-
down, which glides down pitch in an offset note, and glissup,
which glides up pitch in an onset note. They are observed as
fluctuations in the F0 contour and affect perception of singing
voice individuality [12, 13]. Figure 2 shows a block diagram
of our method. Two problems need to be addressed.

1. Estimation of singing voice F0 from polyphonic music
2. Identification and parameterization of vocal expres-

sions in F0 contour

While several studies have targeted the former [14, 15, 16, 17],
the methods proposed did not achieve highly precise estima-
tion or were time-consuming. We propose a simple and pre-
cise method using the corresponding note sequence. Although
some studies use a score to improve F0 estimation [18, 19, 20,
21], we use only note numbers and the order. The F0 contour
is searched for in a limited frequency range by considering the
smoothness. The latter problem is a step in vocal expression
transcription. Each vocal expression is identified and parame-
terized in accordance with designed rules on the presupposition
that the expressions do not overlap temporally.

2. F0 ESTIMATION

Singing voice F0 estimation requires high accuracy and high-
frequency resolution since vocal expressions are directly ex-
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Fig. 2: Block diagram of vocal expression transcription.

tracted from F0. We thus use the note sequence, which repre-
sents the sequential order of notes in singing. The search range
for F0 is limited from 400 [cent] lower than the minimal value
to 400 [cent] higher than the maximal value of the sequence,
where “cent” is the logarithmic unit of frequency and is calcu-
lated from linear frequency [Hz]: C = 1200 ∗ log2

H
L . The

H and L denote the original linear frequency and the lowest
frequency in log scale, respectively. In the next section, we
describe the formularization for F0 estimation.

2.1. Formularization

The estimation of F0 can be considered to be a time sequence
search problem in time-frequency domain. To represent the
likelihood that an F0 f is the most predominant F0 in the t-th
spectrum, we introduce measurement cost function PM (t, f).
In the simplest method, F0 is estimated to be the maximum
value of PM (t, f). However, this causes errors of half/double
pitch or other instrument pitches.

To prevent this, we introduce smoothness cost functions
P∆F0(f) and P∆∆F0(f) to represent the probability functions
of the first and secondary difference of F0, respectively. In-
tuitively, these are the features that ensure respectively that
singing voice F0 does not change drastically and that it changes
smoothly. With these, F0 estimation comes down to the maxi-
mization problem represented by

F̂ = arg max
F :={f1,...,fT }

{
T∑

t=1

logPM (t, f)

+

T∑
t=2

logP∆F0(ft − ft−1)

+

T∑
t=3

logP∆∆F0(ft − 2ft−1 + ft−2)

}
. (1)

We effectively compute this using the Viterbi algorithm.

2.2. Design of cost functions

The measurement cost function is set to the subharmonic sum-
mation (SHS) spectrogram [22], which is normalized for each
time frame. This function can be calculated easily and quickly:

SHS(t, f) =
N∑

n=1

(0.84)n−1CQ(t, f + 1200 log2 n) , (2)
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Fig. 3: Vocal expression parameterization.

PM (t, f) =
SHS(t, f)∫ fu

fl
SHS(t, f ′)df ′

, (3)

where CQ(t, f) denotes a constant-Q spectrogram [23] for
which f and t are log frequency [cent] and time, respectively.
The N is the number of harmonics being considered, and fl
and fu are the lower and upper limits of the search range for
F0.

The smoothness cost functions are
P∆F0(f) = U (−100, 100) (4)

P∆∆F0(f) =

{
N (f |0, 502) (−50 < f < 50),
0 (elsewise)

(5)

where U (L,U) denotes a uniform distribution with minimum
and maximum values of L and U [cent], and N (f |µ, σ2) de-
notes a normal distribution with mean and standard deviation
of µ and σ [cent]. The time frame width is 10 [msec].

Although a Laplace or normal distribution could be used
for P∆F0(f) [16], such a pointed cost function for ∆F0 can
cause excess smoothness of the F0 contour [24]. This flattens
the peaks in vibrato, kobushi, and so on, which results in de-
graded vocal expression identification. For this reason, we use
P∆F0(f) only to limit the transition range and use P∆∆F0(f)
to achieve smoothness. This not only on improves F0 estima-
tion accuracy but also removes fine fluctuations [9] unrelated
to the singer’s individuality.

3. IDENTIFYING AND PARAMETERIZING VOCAL
EXPRESSIONS

Before identifying expressions, we temporally align the note
sequence with the F0 contour by minimizing the squared errors
using the Viterbi algorithm. In this alignment, a note changes
to the next one when there is a rest. We identify vocal expres-
sions in each note section. In the following subsections, we
describe how we identify vibrato, glissando, and kobushi. The
parameterization of expressions is shown in Figure 3.

3.1. Vibrato

Vibrato has two parameters, extent and rate, that respectively
represent the amplitude and speed of pitch variation.
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Table 1: F0 estimation accuracy under four conditions: maximizing
MCF (N), MCF with frequency range limitation (FRL), MCF with
smoothness cost functions (S), and MCF with FRL and S (FRL-S).
“FRL-S” for SHS represents our method.

MCF PreFEst-core SHS
MPE N FRL S FRL-S N FRL S FRL-S

50 70.32 75.18 73.64 76.84 48.81 81.65 51.76 85.93
25 60.80 64.35 63.87 66.38 45.29 74.36 47.16 77.91

MCF: measurement cost function
MPE: maximum permissible error [cent]

Identification To identify vibrato, we use a previously pro-
posed method [25] that calculates the closeness between the F0
contour and the sine wave by short-time Fourier transforma-
tion. We found that enka and min-yo songs have a vibrato with
a much larger extent and a lower rate than the values proposed
previously. We thus uniquely set the range of the extent to 30 –
∞ [cent] and that of the rate to 3 – 8 [Hz].
Parameterization Let fi and ti be the log-frequency and
time of the i-th peak point (zero cross point). Extent Ei and
rate Ri are calculated using:

Ei = |(fi+1 − fi−1)
ti − ti−1

ti+1 − ti−1
+ (fi−1 − fi)|,

Ri =
1

ti+1 − ti−1
, 1 ≤ i ≤ I − 1, (6)

where I is the number of peak points. Vibrato can be resyn-
thesized by using a time-varying sine wave and a set of
{i, Ei, Ri}.

3.2. Glissando

Identification Glissdown (glissup) is identified as a mono-
tonic decrease (increase) of more than Fleast [cent] from a
phrase end (beginning). On the basis of the results of our pre-
liminary experiments, Fleast is set to 200.
Parameterization Glissdown and glissup are stored as the
parameters of a parabola. Since they are considered to have bi-
lateral symmetry, we describe only glissdown here. From time
width T [sec] and log-frequency width F [cent] of the observed
glissdown, the coefficient A of a parabola is calculated:

A = T

√
1

2F
. (7)

Glissdown can be resynthesized as a parabola determined by A
and T .

3.3. Kobushi

Before identifying kobushi, we obtain feature points that are
simply defined as zero cross points and rising and trailing
points in the F0 contour.
Identification Although the pattern of kobushi is not well
defined, we have found by listening to enka songs and observ-
ing the pitch changes that kobushi follows three rules.

1. Kobushi sections do not overlap with vibrato sections.
2. A kobushi section has only one peak with a height

greater than 150 [cent] (main peak).

Table 2: Vocal expressions per singer.

Music Total of vocal expressions
Singer numbers Vibrato Glissdown Glissup
1.Ogata Tomomi 7,28,52 37 6 41
2.Yoshii Hiromi 17,34,69 106 3 27
3.Morimoto Kosuke 38,39,45 32 13 37
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Fig. 4: Vocal expression parameters.

3. In front of and behind the main peak, there is one low
peak (sub-peak) of the opposite sign or nothing.

We define a peak as a feature point with a gradient from the
previous feature point of more than V [cent / sec]. Here, V =
1000.
Parameterization We store kobushi as 5-length vectors of
peak extents and time indices. The vector has five values in
order: a starting point, a left sub-peak, a main peak, a right
sub-peak, and an end point. If a sub-peak does not exist, the
extent of the point is set to zero. The extent Pi of the i-th peak
is calculated using

Pi = fi − (
f5 − f1
t5 − t1

(ti − t1) + f1), (8)

where ti and fi denote the time [sec] and log-frequency [cent]
of the i-th peak, respectively. Kobushi can be resynthesized as
follows. We derive the polynomial whose extreme-value points
are the time indices. Next, the extreme values are scaled to the
peak extents.

4. EVALUATION

4.1. Experimental Settings

All musical pieces for our experiments were converted to a 16
[kHz] sampling rate with 16 [bits] per sample. A constant-Q
spectrogram was calculated with a time resolution of 10 [msec],
a frequency resolution of 6 [bit], a frequency range of 60 to
6000 [Hz], and a Q value of (1/(20.01 − 1))/5. Additionally,
we postulated that voiced sections were detected in advance.

4.2. F0 Estimation Accuracy

Our F0 estimation method was evaluated using the following
data and ground truths.
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Fig. 5: Vocal expression identification. Upper figures show estimated F0 contour and identified expressions; bottom figures
show alignment of note sequence with F0 contour.
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Fig. 6: Resynthesized vocal expressionsLeft figures (green) show
original contour; right figures (blue) show synthesized contour.

Data
We used 96 popular songs from the “RWC Music Database:
Popular Music” (RWC-MDB-P-2001) [26]. The songs were
divided into 2001 fragments containing from 10 to 20 melody
notes.
Ground truths
We used F0 annotation data [27] as the F0 ground truths. F0
accuracy was calculated for maximum permissible errors of 50
and 25 [cent] since F0 errors must be small enough for vocal
expressions to be transcribed. The accuracy rate was defined as
the number of correctly estimated frames divided by the total
number of voiced frames.

Our method uses the SHS spectrogram as the measurement
cost function (MCF). It was compared with the F0’s PDF esti-
mated in the core step of PreFEst [14], a competitive method
for melody extraction. The results are shown in Table 1. Our
method achieved accurate and precise performance compared
with the MCF of PreFEst. While SHS causes half/double pitch
errors, the frequency range limitation and smoothness cost
functions of our method dramatically suppressed the errors.

4.3. Vocal Expression Individuality

Table 2 shows the results of singing style identification for 3
singers using RWC-MDB-P-2001. Now, we excluded kobushis
since the data music includes only popular songs and most
of kobushis identified were misidentification of short vibratos.

Figure 4 plots the expression parameters. The vibrato rate and
extent were averaged for each vibrato. The parameters for each
singer were clustered, especially for vibrato and glissdown.

This suggests that vocal expressions are useful for singer
identification. For example, by combining existing features for
singer identification with the vocal expression parameters, im-
provement of accuracy can be expected.

4.4. Performance with Commercial Recordings

We applied our method to two commercial recordings, a verse
part of “Jinsei Ichiro (Mirora Hibari)” and a chorus part of
“Crispy (Spitz)”. The former is an enka song and the latter
is a Japanese pop song.

Figure 5 shows the results of vocal expression identifica-
tion. On the left (Fig. 5(a)), we can see that large/slow vibrato,
kobushi characteristic of enka and glissup attached to strained
singing, were identified. On the right (Fig. 5(b)), we can see
that frequent glissdown best characterizes the singing style of
the “Spitz” vocal. Figure 6 shows the result of resynthesis of
the vocal expressions. Figs. 6(a)-(b) correspond to the second
and third glissdowns in Fig. 5(b), Figs. 6(c)-(d) correspond
to the second and third kobushis in Fig. 5(a). The root mean
square errors of glissdown and kobushi are 22.3 and 16.0 [cent],
respectively. When we consider that a semitone is 100 [cent],
it can be said that each expression was precisely resynthesized
despite differences in scale and shape.

5. CONCLUSION

In our proposed method for vocal expression transcription, the
singing voice F0 contour is accurately estimated by consider-
ing smoothness. Vocal expressions are then identified from the
contour and parameterized in accordance with designed rules.
Testing demonstrated that our method can transcribe vocal ex-
pressions from commercial songs and resynthesize them pre-
cisely. In future work, we intend to expand our method to more
expressions. We also intend to improve our algorithm to enable
more accurate F0 estimation and vocal expression identifica-
tion. This research was partially supported by KAKENHI (S)
No. 24700168.
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