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ABSTRACT

The short-time Fourier transform (STFT) and the continu-
ous wavelet transform (CWT) are extensively used to analyze
and process multicomponent signals, i.e. superpositions of
modulated waves. The synchrosqueezing is a post-processing
method which circumvents the uncertainty relation inherent
to these linear transforms, by reassigning the coefficients in
scale or frequency. Originally introduced in the setting of the
CWT, it provides a sharp, concentrated representation, while
remaining invertible. This technique received a renewed in-
terest with the recent publication of an approximation result
related to the application of the synchrosqueezing to multi-
component signals. In the current paper, we adapt the formu-
lation of the synchrosqueezing to the STFT and state a simi-
lar theoretical result to that obtained in the CWT framework.
The emphasis is put on the differences with the CWT-based
synchrosqueezing with numerical experiments illustrating our
statements.

Index Terms— multicomponent signals, short-time Fourier
transform, ridge analysis, synchrosqueezing, reassignment

1. INTRODUCTION

Linear time-frequency and time-scale analysis are standard
tools for the study of nonstationnary signals or deterministic
signals with varying frequency content. In particular, multi-
component signals, i.e. superpositions of amplitude- and fre-
quency modulated waves (AM–FM), are accurately analyzed
with STFT [1] or CWT [2]. It is well known that both trans-
forms for such signals draw stripes in the time-frequency (TF)
or time-scale (TS) planes, centered on ridges corresponding
to the instantaneous frequencies of the modes making up the
signal [3].

The Synchrosqueezing transform (SST), introduced in
[4], is a kind of reassignment method [5] that aims to sharpen
a TS representation while remaining invertible. This method
recently received a renewed interest with the publication of
approximation results on the analysis of multicomponent sig-
nals with CWT-based SST [6]. A wide range of applications
have been developed since, for instance in [7, 8, 9]. In this
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work, we focus on the theoretical foundations of the method
but for the STFT-based SST.

Indeed, the SST, originally introduced in the context of
CWT, has not entirely been adapted to the STFT. For exam-
ple, in [10] a SST-like decomposition based on the STFT is
proposed that enables the derivation of some approximation
results. However this transform does not allow for modes re-
construction, yet one of the main characteristics of the origi-
nal SST. More problematic are the global assumptions made
on the modes whereas the STFT and the CWT are local trans-
forms. A more natural extension has been proposed in [11]
but without any theoretical considerations.

This paper addresses this issue by defining properly a
STFT-based SST (FSST) and providing an approximation
theorem similar to [6] but adapted to the case of the STFT.
Besides, a substantial part of this paper will be devoted to the
comparison between CWT and STFT, both on a theoretical
and a numerical perspective. To this end, we first define STFT
and CWT, then introduce FSST and state the approximation
result, underlining the differences with the CWT-based SST.
Finally, these differences are illustrated and demonstrated
through numerical experiments on synthetic multicomponent
signals.

2. SHORT-TIME FOURIER TRANSFORM AND
MULTICOMPONENT SIGNALS

We denote by f̂(ν) the Fourier transform of function f with
the following normalization:

f̂(ν) =

∫
R
f(x)e−2iπνx dx. (1)

The short-time Fourier transform (STFT) is a local version of
the Fourier transform obtained by means of a sliding window
g:

Vf (η, t) =

∫
R
f(τ)g(τ − t)e−2iπη(τ−t) dτ. (2)

The representation of |Vf (η, t)|2 in the TF plane is called the
spectrogram of signal f . Let us also recall that the CWT,Wf ,
uses an admissible wavelet ψ ∈ L2(R) (satisfying 0 < Cψ =∫∞

0
|ψ̂(ξ)|2 dξ

ξ < ∞) and is defined for any time t and scale
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a > 0 by:

Wf (a, t) =
1

a

∫
R
f(τ)ψ

(
τ − t
a

)∗
dτ. (3)

We now want to study the STFT of a multicomponent
AM-FM signal of the form:

f(t) =

K∑
k=1

fk(t) =

K∑
k=1

Ak(t)e2iπφk(t). (4)

If we assume slow variations on the instantaneous amplitudes
Ak and frequencies φ′k, we can write the following approx-
imation in the vicinity of a fixed time t0, which amounts to
approximate f by a sum of pure waves:

f(t) ≈
K∑
k=1

Ak(t0)e2iπ[φk(t0)+φ′k(t0)(t−t0)]. (5)

The corresponding approximation for the STFT then reads
(changing t0 by a generic t):

Vf (η, t) ≈
K∑
k=1

fk(t)ĝ(η − φ′k(t)). (6)

This shows that the representation of a multicomponent sig-
nal in the TF plane is concentrated around so-called ridges,
defined by η = φ′k(t). If frequencies φ′k are enough sepa-
rated when k varies, each mode occupies a distinct domain
of the TF plane, allowing for their detection, separation and
reconstruction.

3. FOURIER-BASED SYNCHROSQUEEZING

The aim of the SST is twofold: to provide a concentrated rep-
resentation of multicomponent signals in the TF plane, and a
decomposition method that enables to separate and demodu-
late the different modes. A theoretical result, originally stated
in [6] in the CWT context, shows its usefulness for well sep-
arated low-modulated multicomponent signals. This section
defines the STFT-based synchrosqueezing (FSST), and then
extends the approximation result of [6] to that framework.
We will pay a particular attention to the differences between
FSST and CWT-based synchrosqueezing (WSST).

3.1. Motivation, definition

Starting from the STFT Vf , the FSST moves the coefficients
Vf (η, t) according to the map (η, t) 7→ (ω̂f (η, t), t), where
ω̂f is the local instantaneous frequency defined by

ω̂f (η, t) =
1

2π
∂t arg Vf (η, t) = Re

(
1

2iπ

∂tVf (η, t)

Vf (η, t)

)
(7)

This operator is simply the instantaneous frequency of the sig-
nal at time t, filtered at frequency η. We will see that it is

indeed a good local approximation of the instantaneous fre-
quencies φ′k(t). The second key ingredient of the SST is the
following “vertical” reconstruction formula, which stands in
L2(R) provided the window g is continuous and does not van-
ish at 0:

f(t) =
1

g(0)

∫
R
Vf (η, t) dη. (8)

This enables to define the FSST which consists in restricting
the integration domain in (8) to the interval where ω̂f (η, t) =
ω, by formally writing:

Tf (ω, t) =
1

g(0)

∫
R
Vf (η, t)δ (ω − ω̂f (η, t)) dη. (9)

The next section defines the FSST more mathematically and
extends the approximation theorem of [6].

3.2. An approximation result

Definition 3.1. Let ε > 0 and ∆ ∈ (0, 1). The set B∆,ε of
multicomponent signals with modulation ε and separation ∆
is the set of all signals f(t) =

∑K
k=1 fk(t) where

• fk(t) = Ak(t)e2iπφk(t) satisfies: Ak ∈ C1(R)
⋂
L∞(R),

φk ∈ C2(R), supt φ
′
k(t) <∞ and for all t, Ak(t) > 0,

φ′k(t) > 0, |A′k(t)| ≤ ε and |φ′′k(t)| ≤ ε.

• the fks are separated with resolution ∆, ie for all k ∈
{1, · · · ,K − 1} and all t,

φ′k+1(t)− φ′k(t) > 2∆. (10)

Definition 3.2. Let ρ be in D(R) the space of smooth com-
pactly supported function such that

∫
ρ = 1, and set γ, δ > 0.

The FSST of f ∈ B∆,ε, with threshold γ and accuracy δ is de-
fined by:

T δ,γf (ω, t) =
1

g(0)

∫
|Vf (η,t)|>γ

Vf (η, t)
1

δ
ρ

(
ω − ω̂f (η, t)

δ

)
dη.

(11)

If δ and γ tend to zero, one formally obtains the usual
definition in signal processing (9).

Theorem 3.1. Consider f ∈ B∆,ε, and ν ∈ (0, 1
2 ). Let g

be in S(R), the space of smooth rapidly decreasing functions,
such that supp ĝ ∈ [−∆,∆]. Pick ρ ∈ D(R) satisfying

∫
ρ =

1. Then, provided ε is small enough, the following holds:

• |Vf (η, t)| > εν only when there exists k ∈ {1 · · · ,K}
such that (η, t) ∈ Zk := {(η, t) / |η − φ′k(t)| < ∆}.

• For all k ∈ {1 · · · ,K} and all (η, t) ∈ Zk such that
|Vf (η, t)| > εν , one has

|ω̂f (η, t)− φ′k(t)| ≤ εν . (12)

316



• For all k ∈ {1, · · · ,K}, there exists a constant C such
that for all t ∈ R,∣∣∣∣∣ limδ→0

(∫
|ω−φ′k(t)|<εν

T δ,ε
ν

f (ω, t) dω

)
− fk(t)

∣∣∣∣∣ ≤ Cεν .
(13)

This theorem gives a strong approximation result since it
ensures that the non-zero coefficients of the FSST are local-
ized around the ridges and that mode reconstruction is easily
achieved from this concentrated representation. The proof of
this result, following the same lines as those of [6], is not
detailed here and we just recall the main steps, referring the
reader to [12], appendix A, for a complete and detailed proof.

Sketch of the proof. The proof starts with approximating Vf
and ω̂f using Taylor expansions of the phases. One first ob-
tains ∣∣∣∣∣Vf (η, t)−

K∑
k=1

fk(t)ĝ(η − φ′k(t))

∣∣∣∣∣ ≤ εΓ1(t), (14)

with Γ1(t) = KI1 +πI2
∑K
k=1Ak(t), In =

∫
R |x|

n|g(x)| dx
and ∣∣∣∣∣∂tVf (η, t)− 2iπ

K∑
k=1

fk(t)φ′k(t)ĝ(η − φ′k(t))

∣∣∣∣∣
≤ ε (Γ2(t) + 2π|η|Γ1(t)) ,

(15)

with Γ2(t) = KI ′1+πI ′2
∑K
k=1Ak(t), I ′n =

∫
R |x|

n|g′(x)| dx.
Then one shows that, if ε satisfies

ε ≤ Γ1(t)
−1
1−ν , ∀t (16)

for any 1 ≤ k ≤ K and (η, t) such that |η − φ′k(t)| < ∆ and
|Vf (η, t)| > εν , one has

|ω̂f (η, t)−φ′k(t)| ≤
[
(2φ′k(t) + ∆)Γ1(t) +

1

2π
Γ2(t)

]
ε1−ν .

The end of the proof needs the following conditions on ε:

εν < ∆ and ε <
[
(2φ′k(t) + ∆)Γ1(t) +

1

2π
Γ2(t)

] −1
1−2ν

, ∀t

and uses mainly Fubini and dominated convergence theorems
to finally establish (12) and (13).

3.3. Relation with CWT-based Synchrosqueezing

We now underline the differences with the WSST regarding
the assumptions made on the multicomponent signal. These
involve two different aspects:

• The assumptions on the modulation for the WSST de-
pends on the instantaneous frequency, i.e. |A′k(t)| ≤
εφ′k(t) and |φ′′k(t)| ≤ εφ′k(t),

• The frequency separation between the components is
logarithmic, and reads φ′k+1(t)−φ′k(t)

φ′k+1(t)+φ′k(t) > ∆, where the

wavelet is supposed to satisfy supp ψ̂ ⊂ [1−∆, 1+∆],

which should be compared with assumptions given in defini-
tion 3.1.

4. NUMERICAL RESULTS

The following numerical experiments illustrate the behavior
of FSST and WSST on multicomponent signals where the
modulations obey different laws. We will use the Gaussian
window (resp. complex Morlet wavelet) to define the STFT
(resp. CWT), which numerically satisfy the assumptions of
compact support and admissibility condition, and which re-
spectively depend on a parameter σ as follows:

ĝ(ν) = σ
1
2 e−πσ

2ν2

and ψ̂(ν) = σ
1
2 e−πσ

2(1−ν)2 .

Note that FSST (resp. WSST) will be represented on a linear
(resp. logarithmic) scale. The Matlab code used to create
all these figures can be downloaded from http://www-ljk.

imag.fr/membres/Thomas.Oberlin/ic14.tar.gz.

4.1. Limiting modulations

Let us start with determining what type of signals, for a fixed
ε > 0, fulfill the assumptions required for FSST or WSST.
To simplify, let us first consider a single mode without AM:
h(t) = e2iπφ(t). We are particularly interested in the strongest
possible modulation, i.e. a phase φ s.t. |φ′′(t)| = ε for the
FSST, or |φ′′(t)| = εφ′(t) for the WSST. One easily sees that
the first kind of modes are linear chirps, having a quadratic
phase φ with φ′′ = ε, whereas the second ones are exponen-
tial chirps like h(t) = e2iπF0e

εt

.
We illustrate this on Figure 1 by drawing both transforms

for a linear chirp with phase φ(t) = 10t + 100t2. It is clear
that the quality of the representation given by FSST is invari-
ant with time. For WSST however, the representation is very
concentrated around t = 1 but of poor quality at lower t, the
quality of the representation being dependent on φ′(t). Figure
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Fig. 1. Comparison of the methods on a linear chirp with
a constant frequency modulation φ′′. Left: FSST. Right:
WSST.
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2 shows the same test, but for an exponential chirp with phase
φ(t) = 10e3t. As expected, FSST provides a sharp represen-
tation at low t, but does not manage to handle high frequency
modulation φ′′(t) at higher times. Interestingly, WSST does
not provide a constant quality representation, but seems to be
more concentrated at high t. Actually, the result in [6] shows
that the reconstruction error for this kind of signal should re-
main globally constant, but because of the logarithmic dis-
cretization for the scales, the representation is sharper at high
frequencies.
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Fig. 2. Comparison of the methods on an exponential chirp
with constant ratio φ′′/φ′. Left: the FSST. Right: the WSST.

In order to obtain a representation with constant quality,
the mode must satisfy a constant ratio φ′′/φ′2. Note that this
phenomenon has been thoroughly discussed in [13], ch. 4.
To check this numerically, we present on Figure 3 the same
test for such a signal, called an hyperbolic chirp, whose phase
is φ(t) = −50 ∗ log(1.02 − t). One easily makes sure that
the corresponding WSST remains sharp whatever the instan-
taneous frequency.
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Fig. 3. Comparison of the methods on an hyperbolic chirp
with constant ratio φ′′/φ′2. Left: the FSST. Right: the WSST.

4.2. Separation vs localization

Let us here discuss the role of parameter σ, i.e. the size of the
window or wavelet. From theorem 3.1 and separation con-
dition (10), it is clear that supp ĝ should be small enough,
which requires σ sufficiently large. Nevertheless, by detail-
ing the error term in the constant C in (13), one can show that
it depends on

∫
R x

n|g(x)| dx, thus σ should be small enough
to ensure a good reconstruction step. This phenomenon is il-
lustrated on Figure 4, where one displays FSST for a sum of
polynomial chirps, using two different window sizes. For σ

small (left), one gets a sharp representation with some inter-
ference, and the contrary for σ large. The same phenomenon
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Fig. 4. FSST of a sum of polynomial chirps, using two differ-
ent windows : σ = 0.02 (left) and σ = 0.04 (right).

is observed on Figure 5, but in the wavelet case. This shows
that σ must be chosen carefully to achieve a trade-off between
localization and separation. When one has only little a priori
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Fig. 5. WSST of a sum of highly modulated chirps, using two
different windows : σ = 2 (left) and σ = 5 (right).

information on the signal, a convenient way to choose be-
tween FSST and WSST is the frequency range of the signal.
The FSST can indeed handle a wide range of modulations at
low frequency while the WSST behaves satisfactorily at high
frequencies in most cases.

5. CONCLUSION

In this paper, we proposed a natural extension of the syn-
chrosqueezing transform to the STFT setting, leading to an
approximation result similar to the one shown in [6]. We em-
phasized the differences between WSST and FSST regarding
frequency separation and low-modulation assumptions. This
allowed us to determine which class of modulations are ana-
lyzed best with each transform, i.e linear or sub-liner modu-
lations should be dealt with FSST and exponential and hyper-
bolic chirps with WSST. Since a trade-off is needed between
time localization and frequency separation, highly modulated
multicomponent signals containing close instantaneous fre-
quencies cannot be satisfactorily dealt with. We should there-
fore attempt in future works to improve the SST behavior in
such contexts, while developing new applications.
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http://www-ljk.imag.fr/membres/Thomas.

Oberlin/these_ThomasOberlin.pdf.

[13] S. Mallat, A wavelet tour of signal processing, Aca-
demic press, 1999.

319


