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ABSTRACT
We describe a method for automatically transcribing guitar tabla-
tures from audio signals in accordance with the player’s proficiency
for use as support for a guitar player’s practice. The system es-
timates the multiple pitches in each time frame and the optimal
fingering considering playability and player’s proficiency. It com-
bines a conventional multipitch estimation method with a basic
dynamic programming method. The difficulty of the fingerings can
be changed by tuning the parameter representing the relative weights
of the acoustical reproducibility and the fingering easiness. Experi-
ments conducted using synthesized guitar audio signals to evaluate
the transcribed tablatures in terms of the multipitch estimation ac-
curacy and fingering easiness demonstrated that the system can
simplify the fingering with higher precision of multipitch estimation
results than the conventional method.

Index Terms— Dynamic programming (DP), guitar tablature
transcription, multipitch estimation, music signal processing, per-
formance proficiency.

1. INTRODUCTION

Tablature (figure 1) is a format of musical scores for string instru-
ments such as guitar and bass, and many guitar players are familiar
with it. Tablature indicates the strings and fret positions by num-
bers, which enables players to play a guitar intuitively without much
musical knowledge. Since a guitar can produce the same pitch with
various strings, multiple fingerings are possible for a sequence of
pitches. Tablature eliminates such ambiguity of fingerings, thus
players can easily play a guitar. Therefore, tablature is helpful to
many guitar players, particularly beginners, in practicing the guitar.

While tablature can motivate most guitar players to practice,
players cannot always obtain tablatures for the pieces they want to
play. It has become more difficult to find objective tablatures due to
the popularization of consumer generated media (CGM). Moreover,
the difficulty of a tablature may not suit the player’s proficiency.
For example, many beginners often want to play musical pieces that
have a level of difficulty greater than their performance proficiency,
causing them to lose their motivation to practice. In contrast, expert
players care more about accuracy than they do about ease of playing
since they are more proficient at their instruments. For all of these
reasons, a system is needed for automatically transcribing tablatures
from audio signals in accordance with the player’s proficiency.

In general, guitar players consider both acoustical reproducibil-
ity and fingering easiness when determining the fingering from an
audio signal. Acoustical reproducibility means how similar the
pitches and timbres played with the fingering are to the actual ones,
and fingering easiness means how easily players can play the piece.
The trade-off between them varies with the player’s proficiency. On
the one hand, most experts select the fingering with which they can
produce sound similar to that of the actual performance, even if it

Fig. 1. Example of tablature.

is difficult to play. On the other hand, beginners tend to select the
easier fingering and tolerate the degraded performance. This means
that the transcription system should enable users to manually tune
the relative weights of these features.

Here we present a method for transcribing tablatures from audio
signals in accordance with the player’s proficiency. The proposed
method estimates the fingering satisfying the constraints on guitar
performance by modeling the fingering estimation as a longest path
search problem on a weighted directed acyclic graph and solving it
by a dynamic programming (DP) [1]. The difficulty of the estimated
fingerings can be changed by tuning the weights for acoustical re-
producibility and fingering easiness.

2. OVERVIEW OF PROPOSED METHOD

The procedure used in our proposed method is mostly the same as
that in our prior work [2]. First, the multiple pitches in each time
frame are estimated by using an existing method and then the opti-
mal fingering is estimated on the basis of the results. Next, the un-
playable combinations of pitches in the original result of multipitch
estimation are suppressed by using the estimated optimal fingering.

Latent harmonic allocation (LHA) [3], which is a conventional
multipitch estimation method using machine learning, is used to es-
timate the appearance degree of multiple pitches in each time frame.
LHA approximates harmonic structures of instrumental sounds us-
ing a Gaussian mixture model (GMM) and estimates the model pa-
rameters using Bayesian estimation. With LHA, we can estimate
Ntk, the appearance degree of the k-th pitch in the t-th time frame,
by inputting the frequency spectrum of the audio signal.

The optimal fingering is estimated on the basis of the results of
LHA and predetermined fingering costs. A fingering is regarded as
the changes with time of the fingering configurations used, and it is
modeled by using a weighted directed acyclic graph (figure 2). The
graph is described in detail in the next section. The optimal sequence
of fingering configurations C∗ = {c∗p1 , . . . , c

∗
pT } is estimated by

searching the longest path of the graph using DP [1].
Any pitches that cannot be played with the optimal fingering C∗

from the original LHA results are suppressed. The modified appear-
ance degree of the k-th pitch in the t-th time frame is defined as

Ñtk =

{
Ntk (k ∈ Kpt)
0 (otherwise)

,

where Kpt = {kpt1, . . . , kpt6} represents a combination of the
pitches that can be played with all six strings and the optimal finger-
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Fig. 2. Weighted directed acyclic graph for fingering estimation.
Vertical axis represents fingering configuration, and horizontal axis
represents time frame. Directed edges represent transitions of con-
figurations. Onset occurs at t-th and (t + 2)-th time frame, when
configurations may be changed. Here D = 3 and there are two ex-
ample configurations.

ing configuration c∗pt . The presence or absence of pitches is finally
determined by making a threshold decision on Ñtk. That is, thresh-
old parameter α is set, and all pitches that satisfy Ñtk > αmax Ñtk

are regarded as played in the t-th time frame.
The strings and fret positions to be played in each time frame

are estimated by using the result of fingering estimation C∗ and that
of the threshold decision on Ñtk. The actual tablature can be tran-
scribed by combining these results with other information such as
the results of an existing beat tracking method [4].

3. WEIGHTED DIRECTED ACYCLIC GRAPH

Here we formalize the weighted directed acyclic graph used to esti-
mate the optimal fingering and describe a way to define the locations
of the vertexes and edges and the weight of each edge. In our prior
work [2], the weights of the edges are defined only by acoustical re-
producibility. By contrast, the proposed method defines the weights
by the weighted sum of acoustical reproducibility and fingering easi-
ness. This enables fingering to be estimated on the basis of a player’s
proficiency. Furthermore, we slightly modified the three constraints
regarding guitar performance that determine the locations of vertexes
and edges. Here we represent use of the p-th fingering configuration
in the t-th time frame as vtp and the edge from vtp to vuq as etupq .

3.1. Three constraints

The locations of vertexes and edges are determined by three con-
straints on guitar performance. The first constraint is “playable
configuration constraint,” which ensures the playability of the fin-
gering configuration used in each time frame. In our prior work
[2], playable configurations were theoretically enumerated based
on only reach of fingers and number of fingers, which included
some configurations that is actually unplayable. In the proposed
method, playable configurations are enumerated more strictly by
using a standard guitar chordbook [5]. First, we enumerate the
templates of common fingering configurations, which contain in-
formation about only the relative finger positions, by referring the
chordbook. We then enumerate all playable fingering configurations
by arranging these templates on any of the fret positions on a guitar
fingerboard. Here we assume a standard guitar with 20 frets and
6 strings tuned to normal tuning (EADGBE). In this case, the total
number of enumerated fingering configurations is P = 1401. By
making these fingering configurations correspond to vertexes of the
graph, vt1, . . . , vtP , we can ensure the playability of a fingering
configuration in each time frame.

The second constraint is “configuration change timing con-
straint,” which allows a fingering configuration to change only at
onset time frames. Onset time frames are detected on the basis of
Ntk flux, NFt =

∑
k max(0, Ntk − N(t−1)k), which is an appli-

cation of spectral flux [6]. When using Ntk flux instead of spectral
flux, all of the non-harmonic energy that happens at the attack are
disregarded. However, we use Ntk flux because it was experimen-
tally confirmed that onsets can be detected more accurately with it.
We regard any time frame for which the value of NFt is higher than
a certain threshold βmaxt NFt as an onset time frame. Here β is a
threshold parameter.

The third constraint is “configuration continuity constraint,”
which forces fingering configurations to be used at least for D con-
tinuous time frames after the configuration changes from one to
another. This constraint reflects the fact that guitar players cannot
move their fingers too quickly. Here we assume that the minimum
duration D is a fixed value for the entire piece and independent of
the fingering configurations and the timing of configuration changes.

For the second and third constraints, an edge of the graph etupq
satisfies either of the following two conditions:

• p = q, u = t+ 1.
• p 6= q, u = t+D, and t is an onset time.

An edge of the graph, et̂(t̂+D)pq (p 6= q), represents a change in the
used fingering configuration from the p-th one to the q-th one in the
t̂-th time frame. In this case, the q-th configuration is used for the
following D time frames.

3.2. Weight of each edge
The weight of each edge etupq is defined on the basis of both acous-
tical reproducibility (AR) and fingering easiness (FE). Since there is
generally a trade-off relationship between them that depends on the
proficiency of the player, we define the weights of the edges as the
weighted sum of AR and FE:

Wtupq =

u−1∑
t′=t

{wAR(Xt′+1, cpt′+1
) + (1− w)FE(cpt′ , cpt′+1

)},

where w is the parameter used to change the relative weights of
AR and FE and thereby reflect the player’s proficiency in the fin-
gering estimation. The lower the w, the higher the priority of FE
against AR, resulting in easier fingering for beginners. Conversely,
the higher value the w, the higher the priority of AR against FE.
When w = 1.0, no consideration is given to FE, and the fingering
that maximizes AR is estimated. By tuning w in accordance with the
proficiency of users, who will play the transcription, the tablature of
appropriate difficulty is transcribed.

AR and FE are defined as a hierarchical structure, as shown in
figure 3. The details are described below.

3.2.1. Acoustical reproducibility

AR represents how accurately the actual sound of the performance
is reproduced with a fingering. The main factors that affect on sound
are pitch and timbre. While a player can produce the same pitch
with different combinations of strings, the timbre for each string is
slightly different, thus players can play sound closer to the actual
sound by considering differences in timbre. However, compared
with other string instruments such as the violin [7], such differences
are often disregarded in guitar performance, and many players tend
to consider the fingering easiness to be more important than exactly
reproducing the timbre when determining the fingering. Therefore,
we approximate AR by using only pitch reproducibility (PR):

AR(Xt, cp) ≈ PR(Xt, cp) =
∑

k∈Kp

Ntk.
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Fig. 3. Hierarchical structure of weights of edges in figure 2.
Weights are defined as weighted sum of AR and FE, and each feature
is defined as combination of further lower features.

This formula means that the pitch reproducibility of spectrum Xt

for fingering configuration cp is defined as the summation of the
appearance degrees of the six pitches Kp = {kp1, . . . , kp6} that
can be played with the configuration. For this calculation, duplicate
pitches in Kp are eliminated in order to prevent the configurations
that have pitch duplications from unfairly getting a higher score.

3.2.2. Fingering easiness

FE is determined by both the easiness of playing a fingering con-
figuration and that of changing the fingering configuration from one
to another [8, 9]. Therefore, here, we calculate the cost of playing
fingering configurations (CP) and that of changing the configuration
(CC) for all playable ones in advance and define FE as

FE(cp, cq) =
1

1 + (CP (cq) + CC(cp, cq))
.

CP is defined by four features, “a1: width of finger spread,”
“a2: number of fingers used,” “a3: fret position of forefinger,” and
“a4: whether it is a barre chord,” by referring to previous work on
guitar fingering [8, 10, 11]. In prior work on CC [12, 13], the cost
was calculated by summing up the Manhattan distances of all fingers
between two configurations. However, strictly considering the actual
guitar performance, this way of determining the cost is insufficient
because fingers do not move independently. Therefore, we calculate
CC in the following steps. First, all fingers used in one fingering
configuration are moved horizontally along the fretboard so that the
fret position of the forefinger on one configuration is equal to that
on the other configuration. This movement distance is regarded as
that of player’s wrist (a5). After that, the Manhattan distances of all
fingers between the two configurations are calculated and summed
up (a6). CC is defined the weighted sum of a5 and a6.

Thus CP and CC are defined as:

CP (cp) =

4∑
i=1

θiai(cp), CC(cp, cq) =

6∑
i=5

θiai(cp, cq),

where θ = (θ1, θ2, . . . , θ6) is a parameter used to determine the rel-
ative weight of each feature. We can reflect each player’s tendency
and his or her strong and weak points for the fingering estimation
by changing the value of θ. For example, for those who have small
hands and cannot extend their fingers very widely, we can estimate
the fingering so that it has less load for him or her by enlarging the
value of θ1. We can also estimate the fingering with less load for
those who are not good at playing barre chord configurations by en-
larging the value of θ4.

Table 1. Results of multipitch estimation. Each value is mean for
all guitar parts. LHA represents conventional method without post-
processing.

LHA Proposed
Value of w 1.0 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10
Precision 0.607 0.649 0.650 0.651 0.655 0.656 0.662 0.669 0.662 0.641 0.617

Recall 0.612 0.637 0.632 0.629 0.623 0.614 0.590 0.539 0.456 0.368 0.313
F-measure 0.604 0.634 0.632 0.632 0.631 0.626 0.614 0.587 0.530 0.459 0.404

4. EXPERIMENTAL EVALUATION

To evaluate the performance of the proposed method, we conducted
experiments for examining the multipitch estimation accuracy and
the fingering easiness for various values of parameter w.

4.1. Experimental conditions

We used 93 guitar parts, extracted from 11 jazz pieces and 56 pop-
ular ones in the RWC music database [14], as experimental data.
Only the first 60 seconds of each part was used in order to reduce the
computation time. There were some silent sections, and the average
sounding time for all parts was 34.7 seconds. A MIDI version of
each piece was used to enable quantitative evaluation for multipitch
estimation. The audio signals were recorded with a MIDI synthe-
sizer (Yamaha MOTIF-XS) and transformed into wavelet spectro-
grams using Gabor wavelets with a time resolution of 20 ms. The
ground truths of multipitch estimation were constructed from corre-
sponding MIDI data.

To evaluate the potential performance of the system, we opti-
mized the threshold parameter of multipitch estimation α so as to
maximize the F-measure for each part and condition. The threshold
parameter for onset detection β was set to 0.10 experimentally. The
fingering configuration duration D was set to 200 (ms), considering
that ordinary guitar players cannot change the fingering configura-
tion more than five times a second. All parameters of the θ were set
to be equal this time.

As evaluation criteria for multipitch estimation, we used the pre-
cision, recall and F-measure for the time frames. For comparison, we
evaluated the multipitch estimation accuracy of conventional LHA
with the same dataset. To evaluate the fingering easiness, we used
the number of fingering configurations used and the entire finger-
ing cost (that is CP + CC) divided by the number of sounding time
frames for each piece. We investigated how these values changed
while varying the value of w.

4.2. Experimental results

The results of multipitch estimation are shown in Table 1. When
the value of w was high, the recall and F-measure with the proposed
method exceeded those of the conventional one. This means that the
constraints added to LHA worked well and eliminated some undesir-
able pitches. The precision of the proposed method was higher than
that of the conventional one for all w. This means that our method
can simplify the estimated fingering with high precision. Moreover,
it seems from table 1 that the relation of w to precision is quadratic,
with a peak at w = 0.40. This result may suggest that the experi-
mental data were played in such ratio of the acoustical reproducibil-
ity and fingering easiness.

The number of fingering configurations used and the entire fin-
gering cost are shown in table 2. Two examples of produced tabla-
tures are shown in figure 4 for reference. They show that the lower
the value of w, the easier the estimated fingering.
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Table 2. Number of used fingering configurations and entire finger-
ing cost. Each value is mean for all parts.

Value of w 1.0 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10
No. of configurations 19.0 19.3 19.5 18.7 18.0 16.6 14.2 10.4 6.1 4.2

Fingering cost 54.7 36.3 29.6 22.1 16.2 12.4 10.1 9.0 8.6 8.4

(a) w = 1.00

(b) w = 0.50

Fig. 4. Examples of transcribed tablatures (RM-J007).

5. DISCUSSION

5.1. Validation of fingering cost
Since the fingering cost for the fingering estimation is manually de-
fined by only a few features of the fingering configurations, there
still remains doubt about the validity of the cost. Therefore, we val-
idated the cost using tablatures rated by their difficulties [15]. The
total number of the used tablatures is 24, and each of them is ranked
on a scale of one to six based on the difficulties by the site manager.

The relationship between the fingering cost and the difficulty of
the tablatures is shown in figure 5. The correlation coefficient be-
tween them was 0.735, thus it can be said that the way of defining
the fingering cost is appropriate to some extent. Moreover, the corre-
lation coefficients between each feature of the cost and the difficulty
are shown in table 3. It is clear from the table that the fret position
and the moving distances of a wrist and fingers are highly related to
the difficulty of fingering.

5.2. Relation to prior work
Several methods for estimating fingering from a sequence of pitches
have been proposed. Tuohy and Potter [9] proposed a tablature gen-
eration method using a genetic algorithm (GA), and others [8, 13]
modeled guitar fingerings as a graph search problem and solved it
by using a DP technique. Since these methods assume that the in-
put contains only notes that can be played with a guitar, they can-
not be used directly for noisy multipitch estimation results including
unplayable combinations of pitches. We solved this problem by es-
timating the optimal fingering on the basis of noisy results obtained
using a conventional multipitch estimation method in combination
with a basic dynamic programming method and then performing
post-processing on it. The fingering decision method proposed by
Hori and others [10] is similar to that of our system, and their method
supports inputs of unplayable pitch combinations. Therefore, we can
make a similar system by directly combining LHA and their method,
although it does not consider the difficuly of transcribed tablatures.
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Fig. 5. Relationship between fingering cost and difficulty of tabla-
tures. Correlation coefficient is 0.735.

Table 3. Correlation coefficient between each feature of fingering
cost and difficulty of tablatures.

Feature a1 a2 a3 a4 a5 a6

Correlation coefficient 0.189 0.219 0.798 0.178 0.824 0.756

There are also methods for transcribing a tablature directly from
an audio signal. Grady and Rickard [16] proposed a transcription
method using a guitar with special equipment to record the sounds
played by each string separately. Hrybyk and Kim [17] and Paleari
et al. [18] combined audio and visual data to identify a player’s
fingering. Fiss and Kwasinski [11] proposed a real-time transcrip-
tion system considering the constraints on guitar performance. Bar-
bancho et al. [19] used the difference in inharmonicity due to the
strings played as a clue for fingering estimation. Other researchers
[12, 20] used HMM to model the fingering configuration transitions.
Although these are effective methods, there are problems with each
of them such as limitation on use due to the requirement for a spe-
cially equipped guitar [16] or for visual data corresponding to the
audio data [17, 18] and insufficiency of enumerated fingering con-
figurations [12]. Our method requires only audio data and supports
over 1000 configurations. Moreover, it considers the proficiency of
the player, which is a big difference from previous methods.

5.3. Future work
Currently, a player’s proficiency and tendencies are reflected by
manually tuning the parameter values. To reduce the burden on the
user, we plan to automatically estimate the optimal values on the
basis of the player’s actual performance or tablatures that the player
can already play. We plan to apply an existing method for automati-
cally tuning the optimal values of the parameters by using a steepest
descent method [8] and one for evaluating player proficiency by
using a fuzzy analytic hierarchy process [21].

Experiments using several values of θ should be conducted to
confirm that our system can reflect the tendency of a player’s finger-
ing. Since MIDI data may have less fluctuation, we plan to conduct
experiments using real audio data in order to confirm the robustness
of our system against noise. We also plan to compare our method
with other transcription methods. Other applications of our method,
such as music arrangement [10, 22] and music information retrieval
(MIR) [23, 24], will also be considered.

6. CONCLUSION
We have developed a tablature transcription method using a conven-
tional multipitch estimation method and a basic dynamic program-
ming method for fingering estimation. The results of experiments
showed that the system can transcribe tablatures of various difficul-
ties with highly precise multipitch estimation. Future work includes
automatically tuning the optimal parameter values, conducting addi-
tional experiments, and investigating applications to other fields of
music information processing. This research was partially supported
by KAKENHI (S) No. 24700168.
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