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ABSTRACT

Transcribing lyrics from musical audio is a challenging research prob-
lem which has not benefited from many advances made in the related
field of automatic speech recognition, owing to the prevalent musical
accompaniment and differences between the spoken and sung voice.
However, one aspect of this problem which has yet to be exploited by
researchers is that significant portions of the lyrics will be repeated
throughout the song. In this paper we investigate how this information
can be leveraged to form a consensus transcription with improved
consistency and accuracy. Our results show that improvements can be
gained using a variety of techniques, and that relative gains are largest
under the most challenging and realistic experimental conditions.

Index Terms— Music Information Retrieval, Automatic Lyric
Recognition, Automatic Speech Recognition

1. INTRODUCTION

Lyrics are the set of words to a song, and are sung to form the vocal
component of popular music. Whilst a large amount of research in
Music Information Retrieval (MIR) has focused on content-based
analysis tasks such as beat tracking [1], chord identification [2], and
music segmentation [3], there is much less work on the subject of
lyric analysis from audio. This is despite research that suggests that
the lyrics of a song can have a profound effect on a listener’s opinion
of a song [4], can be indicative of style or genre [5], and can even
affect behaviour over prolonged periods of time [6].

For these reasons there is a growing interest in applications in
MIR involving lyrics (see [5, 7, 8]). However, the majority of these
studies assume that the lyrics to a song are known in advance. The
reason for this is clear: despite huge advances in Automatic Speech
Recognition (ASR), Automatic Lyric Recognition (ALR) is a chal-
lenging problem, in part due to the background musical accompani-
ment and low similarity between the spoken and sung voices [7,9–14].

However, there is one aspect in which ‘musical speech’ may be
easier to transcribe than conversational speech: the use of repetition.
Repetitions evoke feelings of familiarity and understanding in the
listener in music [3] and help mediate expectation and novelty [15].
Specifically of interest to the current study is that the lyrics of a
chorus are often approximately constant [16]. In the current work,
we investigate whether the information in manually-labelled repeated
choruses can be shared to yield improved lyric transcriptions: see
Figure 1 for an outline of our proposed methodology. The remainder
of this work is organised as follows: in Section 2, we discuss rele-
vant work in the task of automatic lyric transcription, how structural
information has previously been used to boost performance in MIR
tasks, and the Recognizer Output Voting Error Reduction algorithm,
which forms the basis of one of our proposed techniques. Our novel
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I wanna kiss you!
Loving you is my dream tonight!
Hold me tenderly!
Loving me with all your heart!

Fig. 1: Outline of our proposed techniques. The chorus sections of
acapella audio are aggregated at either the feature or hypothesis level
to form a lyric transcription which is consistent across sections and,
we hope, more accurate than a transcription computed per chorus.

methods are described in Section 3, and evaluated in Section 4. We
conclude the work and discuss areas of future research in Section 5.

2. BACKGROUND & RELEVANT WORK

2.1. Automatic lyric alignment/recognition

Perhaps due to the challenging nature of performing full transcription
of the sung voice, researchers have mostly in the past concentrated on
the task of aligning/synchronising lyrics to audio, where the task is
to assign timestamps to a set of lyrics given the corresponding audio
(see, for example, [12, 17–20]).

However, there are clearly situations in which ALR is required.
For example, an accurate ALR system could be used in situations
where the lyrics are not available, or to aid an alignment-based system
when untimed lyrics (perhaps obtained from the Web) are inaccurate.
ALT techniques could also give rise to ASR systems which are highly
robust to noise. The literature on unaided recognition of lyrics is
limited to just a handful of studies, most notably by Mesaros and Vir-
tanen [7, 21], who attempted the recognition of phonemes and words
from both acapella and polyphonic music, the latter via automatically
extracting the vocal line from the polyphonic and re-synthesizing
into a clean mix. Acoustic and language model adaptation was con-
ducted in order to boost performance, which peaked at 12.4% / 20.0%
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word/phoneme accuracy (see Section 4) for 49 fragments of 12 songs,
each between 20 and 30 seconds in duration. Further improvements
were seen by adapting specifically to the male/female sung voice.

Following this, the authors went on to show that their system
could be used for two interesting applications, despite the relatively
low performance: lyric alignment and lyric retrieval. In the former,
they achieved an average alignment error from reference to hypothesis
of 1.27s, whilst in the latter, precision-at-k for retrieving a song based
on automatically transcribed lyrics revealed precisions of 57%, 67%,
71% at k = 1, 5, 10 respectively.

2.2. Structural information to aid MIR

Previous studies have shown the benefits of utilising structural in-
formation in MIR tasks. For example, Dannenberg [22] improved
beat tracking performance by incorporating structural labels, whilst
Rafii and Pardo [23] used structural cues to aid source separation.
Mauch et. al [24] noticed an improvement in chord recognition ac-
curacy by exploiting structural similarity. Audio features in this last
work belonging to the same segment (chorus, for example) were aver-
aged before being fed to the classifier (a dynamic Bayesian network),
which led to an improvement in accuracy in a majority of songs. The
authors also mentioned that an additional boon of this technique was
that it ensured sections were consistently labelled, regardless of if an
improvement in performance was noted.

2.3. Recognizer Output Voting Error Reduction (ROVER)

Modern ASR systems are sensitive to a number of parameters, and it
is difficult to know in advance which parameter set or algorithm will
be optimal for a given task. Also, it is possible that some systems are
better at transcribing certain words, or perform better under different
conditions within an utterance (such as alternative pronunciations or
types of noise). In order to take advantage of the varying strengths of
multiple ASR systems, Recogniser Output Voting Error Reduction
(ROVER) was developed by Jonathan G. Fiscus in 1997 [25].

ROVER takes as input multiple transcriptions of the same audio
from different ASR systems and combines them to form a consensus
transcription, often with lower error rate. It performs this by Dy-
namic Time Warping (DTW) two transcriptions together, keeping
track of the optimal insertions, deletions and substitutions required to
transform one transcription to the next in a Word Transition Network
(WTN). The output of the DTW procedure is then warped to the
third transcription, and so on, until the list of transcriptions has been
exhausted. This procedure is illustrated in Figure 2. Next, an optimal
left-to-right path through the final WTN is formed. Majority vote at
each node can be used to achieve this, but ties with equal number of
counts must be broken arbitrarily. To resolve this, Fiscus suggests
using word confidence scores to make a more informed decision. To
this end, the score for a given word w with confidence C(w) ∈ [0, 1]
and which occurs with relative frequency F (w) ∈ [0, 1] is defined:

Score(w) = αF (w) + (1− α)C(w), (1)

where α defines the balance between trusting word frequency and
word confidence. Setting α = 1 is equivalent to using majority vote
at each node in the WTN, whilst α = 0 corresponds to only using
word confidence. A parameter CINS is used to define the confidence
of inserting a silence into the WTN (deletions have no cost).

Given that a word may occur multiple times in each hypothesis,
each with different confidence, setting C(w) is non-trivial. Fiscus
suggests two methods for setting C(w): either choosing the maxi-
mum confidence over all occurrences of w, or averaging the scores.
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Fig. 2: Example of the ROVER Word Transition Network algorithm
(from [25]) for three simple hypothesis transcriptions, WTN-1, WTN-
2, WTN-3. (b): WTN-2 is first Dynamic Time Warped to WTN-1,
resulting in one insertion (INS) at the start of the sequence, form-
ing WTN-1’. (c): WTN-3 is then DTW’d to the resulting sequence,
requiring one INS at the end of the sequence, forming WTN-1”.
Majority vote & tie-breaking schemes are then used to find a con-
sensus transcription from WTN-1”, (majority vote consensus for this
example being “b, c, d, e”)

Finally, the consensus output for the algorithm is computed by com-
puting the path through the final WTN which greedily chooses the
maximum score at each node.

3. PROPOSED TECHNIQUES

In this Section, we describe the main contributions of this work. As
stated in Section 1, our main idea is to exploit the fact that the lyrics
for popular songs are often repeated in a chorus, meaning we have
multiple utterances which may be used to aid transcription. There are
many ways in which the multiple choruses may be aggregated; we
describe three methods in the remainder of this Section.

3.1. Average MFCC consensus chorus transcription

As stated in Section 2, averaging of audio features in identical sections
has previously shown to improve performance in chord estimation. A
natural analogue of this in ALR is to try averaging MFCC features
which belong to the chorus of the song (assuming, as in [24] that the
choruses are of equal duration) and feeding this to an ASR system.

It is not immediately obvious that this simple technique will
yield any improvement, although visualising the MFCCs for two
realisations of a chorus (Figure 3), we do indeed notice a high degree
of correlation between the two signals, though subtle variations exist,
consisting perhaps of variations in pitch, volume, or phone duration.
Note also in Figure 3 that the rhythmic nature of popular music means
that the word onsets in choruses are likely to be well-aligned.

3.2. Maximum likelihood consensus chorus transcription

Another methodologically simple technique to resolving multiple
chorus transcriptions into one consensus is to transcribe each chorus
individually, and choose the transcription with the highest model
likelihood. This method is appealing in that the audio features re-
main unchanged and therefore well-matched to the acoustic model
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Fig. 3: MFCC features (first 12 coefficients plus energy) for two real-
isations of a chorus, (a) and (b), from the RWC Music Database [26].
The final subfigure (c) shows their absolute difference, indicating
good alignment a high degree of similarity.

parameters, although it suffers from having to make a ‘hard’ decision
over which chorus transcription to use, neglecting the fact that each
transcription may have individual strengths and weaknesses.

3.3. ROVER-based consensus chorus transcription

The two methods listed above each suffer from a flaw: averaging
MFCCs (Subsection 3.1) may yield poor-quality features not well-
match to the model parameters, maximum-likelihood chorus selection
(Subsection 3.2) ignores the interactions between the choruses and
forces a hard decision. In our final methods, we will use ROVER to
combine multiple outputs into a consensus transcription, which we
anticipate will have neither of the drawbacks listed above.

To our knowledge, ROVER has only previously been used to
combine the output of multiple ASR systems for a single audio seg-
ment. The contribution of using this technique to transcribe multiple
audio segments using a single ALR system is therefore a novel contri-
bution of this work. Crucially, it is the repetitive verse-chorus nature
of popular music which allows us to exploit this; the same technique
will not yield advances in the transcription of conversational speech.

4. EXPERIMENTS

To test the methods described in Section 3, unaccompanied song
samples (solo vocal) were taken from the RWC Music Database
(Popular Music, RWC-MDB-P-2001 No. 81-100 [26]), containing 20
songs sung in English by professional male and female singers at a
16kHz sampling rate, mono Microsoft Wave audio format. Although
separation and isolation of the vocal melody is clearly required for
real-world applications, we feel performing recognition on solo sung
voice is challenging enough as a research problem, and an interesting
starting point to establish an upper bound for our techniques. For
these reasons, the audio used in this work consists of unaccompanied
sung utterances. Since our proposed method is concerned with chorus
sections, all other sections were stripped from the data manually.

Lyrics for these songs were obtained from the same source and
manually checked to be consistent with the audio. We defined the
chorus of each song to be the longest set of consecutive words which
were at some point repeated. Two songs were discarded at this stage

as they were judged to contain no chorus sections. A summary of
the test dataset after the processing steps mentioned above can be
found in Table 1. Methods 3.1–3.3 were tested across each song in

n duration words phones choruses

18 19:17 / 00:58 1930 / 107 5710 / 291 57 / 3

Table 1: Total number of songs, total/median duration, number of
words, phones and choruses for data used in this paper.

the database, with performance measured by calculating the total
number of insertions I , deletions D, and substitutions S required
to convert every transcript to its corresponding reference annotation.
The percentage of correct words and the accuracy was then calculated
at the word or phoneme level as

Accuracy =
N − I −D − S

N
× 100% (2)

4.1. Baseline ALR system

For our baseline system we used a cross-word triphone HMM trained
on the WSJ corpus [27] with 8 Gaussians per phone and 16 silence
Gaussians. The model had approximately 2750 tied states. It has
been noted in previous research [7] that the language models required
for decoding singing differ from those trained on speech. Concerned
that this would result in such poor performance that our system would
not see any improvement, we constructed a bigram language model
per test set song (which we call ‘Song’), to act as an upper bound on
performance. This assumption was then relaxed by constructing a
bigram model from the entire test set, (‘Test’), and furthermore by
using a general-purpose bigram model trained on the WSJ transcrip-
tions (‘WSJ’). Each of the models were formed from the unstressed
pronunciation from the CMU set of 40 phones.

Finally, suspecting that this model would not match our sung au-
dio, following [21] we performed acoustic adaptation via two rounds
of Maximum Likelihood Linear Regression on a set of ten held-out
(English) training songs from the RWC Music Database (Royalty-
Free Music, RWC-MDB-R-2001 No.6-15 [26]). All decoding was
performed using the HDecode command within HTK [28].

4.2. Averaging/max-likelihood consensus chorus transcription

Our first methods for exploiting repetitions in songs involve taking
the mean of MFCC features or choosing the chorus sequence with
the highest likelihood. Results for these experiments together with
the baseline method can be seen in Table 2. Inspecting these results,

Performance / Language Model

Word Accuracy (%) Phone Accuracy (%)

Method Song Test WSJ Song Test WSJ

Baseline 43.78 23.47 03.40 53.33 38.95 24.40
Mean 41.97 21.81 05.39 51.24 38.35 26.99
Likel. 48.70 27.15 05.91 56.08 41.56 26.99

Table 2: Baseline autmatic lyric recognition method and two pre-
processing techniques which leverage structural information. Best
results for each column are shown in boldface, statistically significant
improvements from the baseline are underlined.
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we at first see that the performance of the proposed ALR system
is not as high as for ASR systems [29], even for the case when we
have full knowledge of the language model per song (columns 1
and 4). This indicates that significant research effort needs to be
invested into acoustic model creation if performance in ALR is to
approach the accuracy of ASR systems. Performance is highest
when the most information about the language model is given, with
a decrease in accuracy from 43.87% to 3.40% at the word level and
53.33% to 24.40% at the phone level. Although these figures are low
in magnitude, they are similar to results from previous studies (see
Subsection 2.1), at least at the phoneme level.

Moving on to the first of the proposed methods (row 2), we see
that simple averaging of MFCC features only shows an improvement
with the WSJ language model. We believe the reason that the same
improvements reported for chord recognition using the same tech-
nique cannot be replicated, is that the rate at which phonemes change
is far faster than musical chords meaning that the salient phoneme
onsets are ‘blurred out’ by the averaging process. We also tested the
improvements seen using this technique for significance using the
paired non-parametric Wilcoxon signed-rank test, using the per song
accuracy as a statistic, finding no significant improvement.

Finally, row 3 of Table 2 shows that choosing the maximum-
likelihood utterance yields improvements over the baseline in all cases
and evaluations. All improvements were found to be significant at the
5% level using the signed-rank test per song. Interestingly, it seems
that the largest relative improvements for word accuracy are found
when baseline performance is lowest (relative word improvements:
11%, 16%, 74%), contrary to our assumptions (see Subsection 4.1)
and indicating that leveraging multiple choruses is most advantageous
in the most realistic, challenging scenarios.

4.3. ROVER-based consensus chorus transcription

Next, we implemented ROVER on our chorus audio, granting it
access to each baseline chorus transcription and using the scoring
methods listed in Subsection 2.3. We found that CINS = 1 and
values of α between 0.4 and 0.8 were required to produce optimal
Word Accuracy. Results can be seen in Table 3. Inspecting Table

Performance / Language Model

Word Accuracy (%) Phone Accuracy (%)

Method Song Test WSJ Song Test WSJ

Baseline 43.78 23.47 03.40 53.33 38.95 24.40
Majority 50.05 30.98 09.48 55.06 42.75 25.53
Max con. 49.69 30.73 09.48 55.62 41.52 25.64
Av. con. 49.95 30.78 09.48 55.71 43.06 25.64

Table 3: Word/phoneme accuracies for the baseline and ROVER-
based approaches. Best results for each column are in boldface.

3, we see that ROVER offers substantial improvements over the
baseline in every regard. Word accuracy increases from around (43%,
23%, 3%) to (50%, 31%, 9%) with (song, test-set, WSJ) language
models respectively, representing relative improvements of (16%,
35%, 200%). All improvements at the word level were found to
be significant. There appears to be little difference between the
scoring methods (rows 2–4) , which was confirmed by a signed-rank
statistical test. Performance is also higher than each of the results
from Subsection 4.2, confirming our hypothesis that the optimal
transcript comes from different parts of competing hypotheses.
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Word accuracy improvement (%)
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Fig. 4: Absolute word accuracy improvements using our proposed
techniques (Likelihood, left; ROVER majority vote, right) using the
‘Song’ language model.

Performance improvements (in absolute word accuracy %) for
two of our methods can be seen in Figure 4, showing an improvement
in 14 of 18 songs for method 3.2, and an improvement of 12 of 18
songs (of larger magnitude) for method 3.3. Interestingly, it seems
that in some cases one model improves where the other fails, indicat-
ing that a further round of ROVER on the outputs may yield further
improvements, which has been noted in the ASR literature [29].

5. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated how repeated utterances phrases in
chorus songs can be combined to form a consistent consensus tran-
scription. We tested one existing method (feature averaging) and
introduced two new methods to achieve this goal: maximum likeli-
hood chorus selection and ROVER. The application of ROVER to
multiple audio example using a single ASR system is a novel con-
tribution of this work. Experimental results showed that averaging
of MFCC features did not offer an improvement in most cases, but
that significant gains can be made using the two proposed methods.
Particularly surprising to us was that ROVER-based methods offered
the greatest relative improvement when baseline performance was
lowest, highlighting the potential of this method in real-world tasks.

The techniques presented in this work may be of use in other MIR
scenarios in which a consensus annotation from many candidates is
desired, which has been the subject of at least two recently-published
papers on beat tracking [30] and chord detection [31]. We would
like to explore this in future work, as well as create high-quality
acoustic and language models for ALR. Finally, we would like to
investigate if the emission probabilities from multiple choruses can
be effectively modelled using a multiple-emission Hidden Markov
Model framework. All of the above we hope will boost baseline ALR
accuracy, bringing performance closer to the figures seen in ASR.
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