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ABSTRACT

The application of adaptive, time-frequency based signal analysis

has recently attracted increasing attention. While using adapted

time-frequency atoms has shown promising results for example in

audio processing, the reconstruction from the corresponding analy-

sis coefficients usually exhibits significant error. In this contribution

we propose a method to reduce the reconstruction error by using

modified time-frequency atoms in the transition region between

adjacent areas of time-frequency adaptation. The modification is

obtained by projecting the relevant atoms onto a system of weighted

vectors which are optimally concentrated inside the desired regions

of adaptation. We give a theoretical derivation of the improvement

of error and illustrate our method with numerical examples.

Index Terms— Gabor frames; adaptive representations; audio

processing; time-frequency localization operator

1. INTRODUCTION AND OUTLINE

Processing audio signals is most often based on some kind of local

Fourier analysis. The most classical tool is the phase vocoder, aka

short-time Fourier transform [1–4]. The basic analysis consists of

the multiplication of signal parts with a finite-length and sufficiently

smooth time-window and subsequent Fourier transform. To obtain

more flexibility with respect to the length of the localizing window

and thus the time-resolution and, correspondingly, frequency reso-

lution, transforms with locally varying window-lengths have been

proposed, e.g. lapped transforms [5] or, more recently, the non-

stationary Gabor transform [6]

However, in some cases, the thus-obtained flexibility is not

sufficient; certain applications require the usage of different time-

adaptive window systems in different frequency bands. Examples

for these situations occurring in audio processing can be found

in [7]. In the latter paper, the problem is approached by weighting

the synthesis windows prior to reconstruction. Thereby, regions of

overlap between adjacent frequency bands (2 in the case of [7])

are introduced and the transition is accomplished by using weights

which sum up to 1. While the method is innovative and leads to

significant improvements of processing results in certain application

situations, the reconstruction of a given signal from the unaltered co-

efficients features rather high errors in the transition regions between

adjacent frequency bands.

In this contribution we suggest a new method to obtain analysis-

synthesis systems which provide desired resolution in various fre-

quency bands and at the same time provide arbitrarily good recon-

struction quality. These properties are achieved by relying on re-

cently achieved results on time-frequency localization operators and

frames obtained from them, cf. [8].
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The two main contributions of this article are the following:

• We propose the application of time-frequency localization op-

erators corresponding to the desired partition into frequency

bands. At the same time, the windows can also change over

time as desired. Then, by projecting the reconstruction atoms

of interest onto subspaces generated by the eigenvectors

which are best-concentrated in each frequency band and time

interval, we naturally obtain a smooth transition between

adjacent frequency bands and time intervals.

• We show how to pick the number of reconstruction atoms

outside each time-frequency area of interest according to a

prescribed tolerable error bound and provide a number of nu-

merical results in comparison to the state-of-the-art method

proposed in [7].

1.1. Previous Work

Truly flexible tilings of the time-frequency plane have frequently

been addressed in the past decades. The earliest work tried to estab-

lish orthogonal bases with a prescribed time-frequency profile [9].

Partitions based on Gabor frames and information criteria were in-

troduced in [10] and also applied in [11] and their existence under

relatively general conditions was proved in [12]. Recently, the idea

to obtain discrete tilings based of the spectral decomposition of con-

tinuous time-frequency localization operators, cf. [13], was intro-

duced, see [8, 14].

In parallel to the endeavor to simultaneously obtain flexibility in time

and frequency, the concept of nonstationary Gabor frames provides

a convenient tool for obtaining adaptivity in either time or frequency,

see [6, 15, 16].

On the other hand, the desire to accurately manipulate certain signal

components while leaving surrounding ones as unbiased as possible,

often arises in applications and corresponding analysis coefficients

are modified accordingly. However, due to the uncertainty princi-

ple, the separation of components is usually not precise enough and

thus these approaches typically lead to rather high reconstruction er-

rors, as also reported in [7]. In this contribution, we thus propose

a completely novel approach of a theoretically motivated adaptation

of synthesis windows.

2. THEORETICAL DERIVATION

2.1. Time-frequency localization

We introduce the concept of localization in time-frequency in the

continuous domain in order to avoid heavy notation. In Section 3

we show how the continuous setting can be mimicked in a discrete

setting.

The short-time Fourier transform (STFT) of a function f ∈ L2(R) is
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a function on R
2 defined, by means of an adequate smooth and fast-

decaying window functionϕ ∈ L2(R), ‖ϕ‖2 = 1, e.g. a normalized

Gaussian window, as

Vϕf(z) =

∫

R

f(t)ϕ(t− x)e−2πiξtdt, z = (x, ξ) ∈ R
2.

Motivated by the well-known fact, that f can be re-synthesized from

its time-frequency content by,

f(t) =

∫

R2

Vϕf(x, ξ)ϕ(t− x)e2πiξtdxdξ, (1)

the time-frequency localization operator HΩ is defined, for some

compact set Ω ⊆ R
2 in the time-frequency plane, by masking the

coefficients in (1), cf. [13], i.e.

HΩf(t) =

∫

Ω

Vϕf(x, ξ)ϕ(t− x)e2πiξtdxdξ. (2)

HΩ is self-adjoint and trace-class, so we can consider its spectral

decomposition HΩf =
∑∞

k=1 µ
Ω
k 〈f, φ

Ω
k 〉φ

Ω
k . Its eigenfunction φΩ

1

corresponding to the largest eigenvalue µΩ
1 , is optimally concen-

trated inside Ω in the sense that
∫

Ω

∣

∣

∣Vϕφ
Ω
1 (z)

∣

∣

∣

2

dz = max
‖f‖2=1

∫

Ω

|Vϕf(z)|
2 dz.

More generally, the first N eigenfunctions of HΩ form an or-

thonormal set in L2(R) that maximizes the quantity

N
∑

j=1

∫

Ω

|Vϕψj(z)|
2 dz

among all orthonormal sets of N functions {ψj}j=1,...,N in L2(R).
In this sense, their time-frequency profile is optimally adapted to Ω.

2.2. Gabor frames

We now obtain a collection of time-frequency shifted functions from

sampling of the time-frequency plane. Given a window function

g ∈ L2(R) and a lattice Λ with TF parameters (t0, ω0), i.e. Λ =
t0Z × ω0Z, we denote a time-frequency shift by λ = (λ1, λ2) by

π(λ), i.e. π(λ)g(t) = g(t − λ1)e
2πiλ2t. Then, the collection

G(g,Λ) = G(g, t0, ω0) = {π(λ)g : λ ∈ Λ} is called a Gabor

system. Associated with G(g,Λ) are the analysis operator C, given

by Cf = {〈f, π(λ)g〉 : λ ∈ Λ}, synthesis operator D = C∗,

given by Dc =
∑

λ∈Λ cλπ(λ)g, c ∈ ℓ2, and the frame operator S
given by Sf = DCf =

∑

λ∈Λ〈f, π(λ)g〉π(λ)g. Equivalently, the

Gabor system G(g,Λ) is a Gabor frame, cf. [17], if S is invertible.

In this case, there exists a dual frame G(g̃,Λ) and reconstruction is

possible via:

f =
∑

λ∈Λ

〈f, π(λ)g〉π(λ)g̃ =
∑

λ∈Λ

〈f, π(λ)g̃〉π(λ)g. (3)

The canonical dual window generating a dual frame is given by g̃ =
S−1g.

If S = AI , where I is the identity operator and A a positive

constant, the Gabor frame is said to be tight. Inversion is done simply

by S−1 = 1
A
I . Now, a tight Gabor frame can actually be obtained

from any Gabor frame. If the Gabor system G(g,Λ) is a frame, then

it follows from positivity of the (self-adjoint) frame operator S that

the operator S−1/2 is well defined, positive and self-adjoint, and

f = S−1/2S(S−1/2f) =
∑

λ∈Λ

〈f, π(λ)S−1/2g〉π(λ)S−1/2g. (4)

Letting gt = S−1/2g, the system G(gt,Λ) is a tight frame and gt
is called the canonical tight window. We see from (4) that a tight

frame has the advantage of using using the same window for analysis

and synthesis, a property that is useful in applications that involve

resynthesis of processed analysis coefficients, e.g. masking, which

we shall do in the succeeding sections.

2.3. Obtaining sets of localized, adapted atoms

Assume now that we are given a partition of R2, i.e. a set family

of sets Ωγ ⊂ R
2 such that

∑

γ 1Ωγ ≡ 1. Here, 1Ω denotes the

indicator function of the set Ω. Then, from (1) and using the spectral

decomposition of each HΩγ , we obtain

f =
∑

γ

HΩγ f =
∑

γ

∞
∑

j=1

µ
Ωγ

j 〈f, φ
Ωγ

j 〉φ
Ωγ

j .

Now assume further, that a tight Gabor frame Gγ(gγ ,Λγ) is as-

signed to each set Ωγ . Expanding f with respect to each of these

frames, we obtain:

f =
∑

γ

∑

λ∈Λγ

〈f, π(λ)gγ〉

∞
∑

j=1

µ
Ωγ

j 〈π(λ)gγ , φ
Ωγ

j 〉φ
Ωγ

j (5)

In a next step we make two observations:

• The largest eigenvalues µ
Ωγ

j of a localization operator typi-

cally are close to one and then drop to zero very fast (in fact

the sequence (µ
Ωγ

j )j has exponential decay), cf. [18]. Pre-

cisely |Ωγ | eigenvalues lie above 0.5. Consequently, one can

safely discard elements with index numbers j > Nγ for some

Nγ > |Ωγ | in (5).

• On the other hand, the inner product 〈π(λ)gγ , φ
Ωγ

j 〉 can be

shown to decay fast with respect to the distance of λ from

Ωγ , e.g., for a Gaussian windows gγ , the decay is exponen-

tial, while milder decay conditions lead to polynomial decay,

cf. [13]. Therefore, all π(λ)gγ with dist(λ,Ωγ) ≥ b for

some b can be omitted from the expansion (5).

We thus choose an appropriate Nγ , an extension size or overlap b
and set Ω∗

γ = Ωγ ∪ {z ∈ R
2\Ωγ : dist(z,Ωγ) < b}. We then

propose to use the following approximate reconstruction formula:

f̃ =
∑

γ

∑

λ∈Λγ∩Ω∗

γ

〈f, π(λ)gγ〉

Nγ
∑

j=1

µ
Ωγ

j 〈π(λ)gγ , φ
Ωγ

j 〉φ
Ωγ

j (6)

=
∑

γ

∑

λ∈Λγ∩Ω∗

γ

〈f, π(λ)gγ〉PNγ (π(λ)g
γ) (7)

2.4. Error estimates

Proposition 1. Let a partition of R2 be given and let the windows

gγ satisfy a joint polynomial decay condition of the form |Vϕg
γ(z−

λγ)| ≤ C 1
1+|z−λγ |s for all z ∈ R

2 and all λγ ∈ Λγ . Let f̃ be

the approximate reconstruction of f in (6). Then, the reconstruction

error is bounded by ‖f̃ − f‖2 ≤
∑

γ errγ · ‖f‖2 , where for all γ
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and some 0 < δ < 1 the following estimate holds:

errγ ≤





∞
∑

j=Nγ+1

(µ
Ωγ

j )2





1

2

+ (8)

+



C
∑

λ/∈Λγ∩Ω∗

γ

(

1 + (1− δ)( inf
z∈Ω

|z − λ|
s
2 )

)−1




It should be noted that the sum of errγ over all γ can be shown

to be finite for appropriate choice of Nγ and Ω∗
γ , cf. [8, 12]. Here,

we prefer to state the explicit local errors, since their expression is

more informative in showing directly the influence of the parameters

Nγ and b.

3. DERIVED ALGORITHM

3.1. Computation of PN

To obtain the eigenvectors and -values needed for the approximation

in (6), we work with discrete versions of the localization operators

HΩγ . To this end, consider the tight Gabor frame (gt,Λ).We define

the Gabor multiplier Hmγ ,Λ as follows:

Hmγ ,Λf =
∑

λ∈Λ

mγ(λ)〈f, π(λ)gt〉π(λ)gt, (9)

where the masks mγ are obtained by letting mγ(λ) := 1, if λ ∈ Ωγ

and 0 otherwise. Then Hmγ ,Λ is a discretization of the operatorHΩγ

in (2) and it can be shown that its spectral decomposition accurately

approximates HΩγ for sufficiently dense lattice Λ, cf. [19, 20].

In applications Hmγ ,Λ is a matrix whose size depends on the sig-

nal length L and it is not feasible to obtain its eigenvectors directly.

However, the size of the corresponding Gramian matrix, defined in

(10) below, is K ×K with K being the number of the lattice points

λγ inside the support of the maskmγ , which is usually small enough

for the computation of the spectral decomposition to be a feasible

task. Writing Hmγ ,Λ as a composition of the operator G√
mγ : f 7→

[
√

mγ(λ)〈f, π(λ)g〉]λ∈Λ∩supp(m), mapping C
L into C

K , and its

adjoint G∗√
mγ

, the eigenfunctions of Hmγ ,Λ = G∗√
mγ

·G√
mγ may

be obtained from the eigenfunctions of the Gramian matrix

Γmγ := G√
mγ ·G∗√

mγ
by (10)

φ
Ωγ

j =
1

sj
·G∗√

mγ
· uj , j = 1, . . . ,K, (11)

where G√
mγ f =

∑K
j=1 sj〈f, φ

Ωγ

j 〉CLuj is the singular value de-

composition of G√
mγ . Furthermore, in (11) only the largest Nγ

eigenfunctions uj need to be computed.

3.2. Choosing Nγ and Ω∗

For each γ, Nγ eigenfunctions {φ
Ωγ

j }j of Hmγ ,Λ, associated to the

eigenvalues µ
Ωk
j greater than a threshold tγ must be chosen. In prac-

tice, the Ωγ often are of the same area, and we just take the same

value of Nγ for each γ. Choosing Nγ such that µ
Ωγ

Nγ
< 10−m, the

first expression in the error estimate (8) is bounded by 10−m due to

the exponential decay of the eigenvalues.

Second, we choose a rectangular extension Ω∗
k of Ωk by increasing

the sides of Ωk also by a margin of size b, such that in the second

expression of (8), the value infz∈Ω |z − λ| is sufficiently big for all

λ /∈ Λγ ∩ Ω∗
γ .

4. NUMERICAL EXPERIMENTS

To provide a numerical evidence of our concept, we look at exam-

ples in the finite discrete case C
L, L = 144. The time-frequency

plane will be partitioned into four parts, dividing the time axis at

tcut = L/2, and the frequency axis into bands corresponding to

the frequencies above and below ωcut = L/4. We note that these

frequency bands extend to the negative frequencies in a symmetric

manner about the frequency 0.

The following tight Gabor frames will then be associated to the

four regions:

1. G(g1t , 12, 4) at the region Ω1 (lower frequency region and

time t ≤ L/2);

2. G(g2t , 16, 6) at the region Ω2 (lower frequency region and

time t > L/2);

3. G(g3t , 8, 16) at the region Ω3 (higher frequency region and

time t ≤ L/2); and

4. G(g4t , 9, 12) at the region Ω4 (higher frequency region and

time t > L/2).

The signal will be analyzed using these tight Gabor frames, and ap-

plied with weighted functions or restricted over regions that cover

our partitions. Reconstruction is performed via the method intro-

duced in [7] and the proposed method. respectively. We then com-

pare the approximation quality from the two methods.

For the approximate reconstruction [7], weight functions W 1
T

andW 2
T , depending only on time, andW 1

F andW 2
F , depending only

on frequency, shall be applied to the analysis coefficients. These

weight functions are defined as follows:

W 1
T (t) :=











1 if 1 ≤ t ≤ t1
t−t2
t1−t2

if t1 ≤ t ≤ t2

0 elsewhere

with t1 ≤ tcut ≤ t2, W 2
T := 1−W 1

T , i.e. W 1
T (t) +W 2

T (t) = 1 for

each t,

W 1
F (ω) :=



















1 if −ω1 ≤ ω ≤ ω1

ω−ω2

ω1−ω2

if ω1 ≤ t ≤ ω2

ω+ω2

ω2−ω1

if −ω2 ≤ t ≤ −ω1

0 elsewhere

where ω1 ≤ ωcut ≤ ω2,W 2
F := 1−W 1

F , i.e. W 1
F (ω)+W

2
F (ω) = 1

for each ω. Figure 1 shows the four weight functions. We note that

varying the ti and ωi amounts to varying the overlap of the weight

functions. In the experiment, the overlap value b := t2 − tcut =
tcut − t1 for the weight function in time shall also be used for the

weight function in frequency so that b = ω2 − ωcut = ωcut − ω1.

Recall that in [7], the reconstruction formula is given by

f̃W =

4
∑

k=1

∑

λ∈Λk

W k
TF (t, ω)〈f, π(λ)g

k
t 〉π(λ)g

k
t , (12)

whereW k
TF corresponds toW 1

T ·W
1
F for k = 1,W 2

T ·W
1
F for k = 2,

W 1
T ·W 2

F for k = 3, and W 2
T ·W 2

F for k = 4.

We now compare the errors in approximating f using the meth-

ods described above. Figure 2 shows the average of the root mean
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Fig. 1. Weight functions W 1
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Fig. 2. Approximation error vs. amount of overlap.

square (RMS) of the error given by

err(frec) =
‖f − frec‖2

‖f‖2
=

√

√

√

√

√

√

√

√

L
∑

n=1

(f [n]− frec[n])2

L
∑

n=1

(f [n])2
,

of 50 random signals against the amount of overlap b. The solid

line is from the weight function method in [7] while the non-solid

lines result from the proposed projection method. Each of the non-

solid lines uses a different number of eigenfunctions: 45, 50, and

55 eigenfunctions, corresponding to the eigenvalue thresholds tγ =
0.1016, 0.0243, and 0.0040, respectively. In both methods, we see

the dependence of the approximate reconstruction on the overlap

amount. In the case of our proposed method, the second term in

(8) approaches 0 as the overlap, or margin, b increases. Moreover,

the projection method has the added possibility of improving the ap-

proximation error by increasing the number of eigenfunctions in the

reconstruction. The dependence of the reconstruction error on the

number of eigenfunctions in the subspace is depicted in Figure 3.

Finally, we point out, that the separation between the distinct re-

gions chosen for the different desired resolutions, that is, Ωγ , γ =
1, . . . , 4, is much sharper using the projection method. This fact

is illustrated in Figure 4, where we show the results of applying

one of the local systems to random white noise. Depicted are the

spectrograms of the results for the systems corresponding to low fre-

quencies, first signal part and high frequencies, second signal part,
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Fig. 3. Approximation error vs. number of eigenfunctions in the

subspace.
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Fig. 4. Concentration of local systems within Ωγ . The spectrograms

of local systems applied to random noise are shown.

respectively. For both methods, the set of parameters providing the

best approximation quality is used. It can clearly be seen, that the

projection method significantly reduces the spill outside the region

of interest which is quite considerable in the weight function method.

5. DISCUSSION AND PERSPECTIVES

In this contribution, we introduced an innovative method for obtain-

ing time-frequency frames with desired local properties. While our

experiments provide only toy-examples for signals of short length,

all methods can be efficiently extended to realistic signal lengths.

The implementation of the necessary routines and their subsequent

evaluation on a database of realistic signals is part of the future work

on the topic. However, already the preliminary results show the

promising potential of the proposed method: it provides arbitrarily

good approximation quality while conserving the good localization

property. This is in clear contrast to previously existing methods.

On the other hand, the computational effort is significantly higher;

accurate evaluation in a realistic scenario will be provided in a fu-

ture contribution. However, for many of the applications of interest,

real-time processing is not an issue and thus, higher computational

cost can be accepted for the sake of better processing results.
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