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ABSTRACT

We propose a new algorithm to efficiently obtain non-negative

sparse representations for audio. The spectrum of an audio signal is

represented as a sparse linear combination of atoms taken from an

overcomplete dictionary. The algorithm is based on minimizing the

generalized Kullback-Leibler divergence between an observed mag-

nitude spectrum and a non-negative linear combination of atoms,

plus an ℓ1 regularization term. The proposed method consists of an

active-set method that iteratively updates a set of active atoms that

have non-zero weights, using a Newton step where the weights of

the active atoms are updated. The proposed method was evaluated

using mixtures of two speakers, and it was shown to yield more

than 10 times faster convergence in comparison to an established

algorithm based on multiplicative update rules. Moreover, the ℓ1
regularization was found to decrease the computation time and to

improve the source separation performance.

Index Terms— sound source separation, non-negative matrix

factorization, Newton algorithm, convex optimization, sparse coding

1. INTRODUCTION

Compositional models such as non-negative matrix factorization

model non-negative data as a non-negative linear composition of

non-negative components. The underlying metaphor of construction

from parts makes them excellent models for many kinds of data,

in particular audio, where they are used to characterize magnitude

spectral representations of complex sounds as a non-negative lin-

ear composition of atomic spectral units. Compositional models

of audio have been shown to have several applications in content

analysis [1, 2], manipulation and enhancement [3, 4, 5], and cod-

ing [6, 7]. They have been found to be particularly useful for the

analysis of sound mixtures, and the separation of mixtures into their

constituents. The chief benefit of compositional models in these

applications is their ability to represent the sound from any source

as a composition of atomic sound units from that source. We will

refer to these atomic sound units as “atoms”, and to collections of

atoms as a “dictionary”. Mixtures of sounds become compositions

of the atoms from the dictionaries of all the contributing sources,

and separation of a mixture into its constituents simply becomes

the problem of segregating the contributions of the atoms for the

individual sources to the mixture.

For effective analysis or decomposition, however, two issues

must be addressed. The first is the nature of the dictionary of atoms

for any source. Although not the main topic of this paper, it is never-

theless useful to consider it briefly. Ideally, the dictionary for any
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source must capture all the sounds that can be generated by that

source, and several supervised learning methods have been proposed

for this purpose, which learn these dictionaries from example record-

ings of the source [8, 9]. Most natural sound sources are complex

and can generate sounds with a large diversity of spectral character-

istics. In order to effectively characterize the variety of sounds that

they may produce, the dictionaries too must be large – larger dic-

tionaries lead to a more accurate representation, and therefore better

analysis or source separation results [10]. Frequently, such dictio-

naries become overcomplete, often greatly so, having many more

entries that the dimensionality of the spectral vectors themselves.

The second issue, which is the topic of this paper, is that of de-

termining how a given data (spectral) vector x must be decomposed

in terms of a given dictionary matrix B, i.e. how to determine the

weight vector w such that x ≈ Bw most closely, and a specified di-

vergence D(x,Bw) between x and Bw is minimized. Closed-form

solutions do not exist for the minimization and iterative algorithms

are required. The computational complexity of these algorithms in-

creases with dictionary size, imposing constraints on the number of

atoms. When the decomposition can be done offline, large dictionar-

ies with tens of thousands of atoms may be used. If the decomposi-

tion must be real-time, dictionaries must be much smaller. In both

cases, the number of atoms and, consequently, the accuracy of the

representation must be compromised in order to make the computa-

tions feasible. There is thus a need for efficient algorithms for the

decomposition, particularly for large dictionaries.

Additional issues must also be considered. The actual algorithm

will depend on this divergence D(x,Bw) that is minimized. For

many types of data the most popular divergence is the squared error,

but for audio applications other divergences such as the generalized

Kullback-Leibler (KL) divergence have been found to be more suit-

able [3, 11, 12]. We will use the KL divergence in this paper.

Another issue to be considered is sparsity. When the dictionary

is overcomplete, the relation x ≈ Bw is underspecified, and an un-

countable multiplicity of equivalent solutions may exist for the de-

composition. To obtain structurally meaningful solutions additional

constraints must be enforced. The most common constraint is that

of sparsity: the weight vector w is required to be sparse, i.e., that

most of its components be zero-valued. Intuitively, the requirement

for sparsity implies that although the source itself is capable of gen-

erating a large variety of spectral structures, as embodied by atoms

in the dictionary, only a small number of these are present in any

given spectral vector. When sparsity constraints are thus employed,

the decomposition is often referred to as non-negative sparse coding,

a term we too will use. The requirement of sparsity by itself is not

specific to overcomplete decompositions – sparsity may be enforced

even when the dictionaries are not overcomplete. Sparsity is usually

imposed through the addition of an ℓ1 regularization term λ||w||1 to
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the divergence that is minimized: minimization of the ℓ1 norm of the

w also naturally biases it towards sparsity [13].

The most commonly used decomposition algorithms [14] are

based on first-order optimization. These are easy to implement, ac-

commodate a variety of divergences, and can also be extended to

more complex models. Second-order algorithms are known to be

generally more efficient than first-order methods and a number have

been proposed. Several of these are constrained to compact represen-

tations where the number of atoms is smaller then the dimensionality

of the spectral vectors [15, 16, 17]. Other second-order methods are

specific to minimizing the squared error divergence [18, 19], which,

as we mentioned earlier, is suboptimal for audio analysis applica-

tions. Yet others minimize a larger class of divergences [20, 21],

however they approximate the Hessian of the objective function to

be minimized by a diagonal matrix, thereby losing some of its struc-

ture.

In prior work [10] we showed that non-negative representations

are naturally sparse, i.e., that when appropriately computed, the esti-

mated weight vectors will have only a small number of non-zero en-

tries even when sparsity is not explicitly imposed. Based on this we

proposed an active-set method, dubbed ASNA, that employs a New-

ton algorithm using a full Hessian matrix for optimization. The pro-

posed algorithm was shown to be very efficient at computing sparse

non-negative decompositions even when explicit sparsity constraints

are not applied.

In this paper we extend the method in [10] to explicitly introduce

sparsity constraints. We do so by introducing an ℓ1 regularization to

the active-set Newton method, and show that it is able to achieve fur-

ther improved decompositions, as evaluated by a signal-separation

task, without loss of efficiency.

The rest of this paper is as follows. In Section 2 of the paper

we describe the model and the criterion for parameter estimation.

Section 3 describes the proposed algorithm, and Section 4 evaluates

its performance in comparison to other available algorithms.

2. NON-NEGATIVE SPARSE CODING OF AUDIO

In non-negative sparse coding of audio, an F × 1 observation vector

x is modeled as a weighted linear combination of atom vectors bn

from a dictionary as

x ≈ x̂ =

N
∑

n=1

wnbn, subject to wn ≥ 0 ∀n, (1)

where wn is the non-negative weight applied to bn, and N is the

number of atoms in the dictionary. We rewrite the model compactly

using a matrix-vector product as

x̂ = Bw, subject to w ≥ 0, (2)

where the F ×N dictionary matrix is defined as B =
[

b1, . . . ,bN

]

and an N × 1 weight vector is defined as w =
[

w1, . . . , wN

]T
.

In audio applications, the observation vector and atoms typi-

cally represent short-time magnitude (square root of power) or power

spectra of audio, but the proposed method is not constrained to any

specific representation, only that the observations and atoms are non-

negative.

Our objective is to estimate the weights w, given the observa-

tion vector x and the dictionary B. The weights are estimated by

minimizing the cost function

f(w) = KL(x||Bw) + λ||w||1 (3)

where KL(x||Bw) is the Kullback-Leibler (KL) divergence be-

tween the observation vector x and the model Bw, ||w||1 is the ℓ1

norm of the weight vector, and λ is a sparseness parameter. The KL

divergence is defined as

KL(x||x̂) =
∑

i

d(xi, x̂i), (4)

where function d is defined as

d(p, q) =











p log(p/q)− p+ q p > 0 and q > 0

q p = 0

∞ p > 0 and q = 0.

(5)

3. PROPOSED ACTIVE-SET NEWTON ALGORITHM

We have shown [10] that even without explicit sparseness con-

straints, the minimizers of (3) are sparse, meaning that only a small

number of weights are non-zero. Based on this observation, we can

calculate (2) more efficiently by explicitly keeping track of a set A
of active atoms. We write:

x̂ =
∑

n∈A

wnbn. (6)

The active set is iteratively updated as described below to find the

optimal set of active atoms. For estimating the weights in the active

set, we use the Newton algorithm. The proposed algorithm consists

of the following steps:

Step 1: The active set is initialized with the single atom bn and

its weight wn that together give the minimum cost KL(x||wnbn)+
λwn. This is done as follows. The optimal weight for any individual

atom bn is obtained by setting the derivative of the above cost with

respect to weight wn to zero and solving for wn, which gives

wn =
1
T
x

1Tbn + λ
, (7)

where 1 is a all-one vector of length F . The optimal weight and

the corresponding cost KL(x||wnbn)+λwn are evaluated for each

atom bn, n = 1...N . The atom giving the lowest cost and its

corresponding weight are used to initialize the active set.

Step 2: The active set is updated by adding an atom having the

most negative partial derivative of the cost function with respect to

weight wn. The partial derivative is given as

∂

∂wn

f(w) = b
T
n (1−

x

Bw
) + λ. (8)

The weight that will be added to the active set is initialized to a

small positive value (10−15 in our implementation). If all the weight

derivatives of (8) are positive, adding a new atom to the active set

will not decrease the cost, in which case no new atom is added.

Step 3: The weights of the atoms in the active set are updated

using the Newton method as

wA ← wA − αH−1

wA
∇wA

. (9)

where wA denotes the vector of weights of the atoms in the active

set, and HwA
is the Hessian matrix of the cost function with respect

to the active-set weight vector. We will also denote the dictionary

matrix consisting of the active atoms as BA. The gradient of the

cost function with respect to the active-set weight vector is given as

∇wA
= B

T
A(1−

x

BAwA

) + λ, (10)

and the Hessian HwA
is

HwA
= B

T
A diag(

x

(BAwA)2
) BA. (11)
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In (9) α is a step size that is calculated as α = min
ri>0

ri, where

r = wA/(H−1

wA
∇wA

). The maximum value of the step size is

limited to 1, which corresponds to the standard Newton algorithm.

The above step size calculation guarantees the resulting weights to

be non-negative. As a result of the above Newton update, an entry

in the weight vector may get a zero value. In this case the atom is

removed from the active set. In order to ensure the numerical sta-

bility of the inversion in (9), we apply Tikhonov regularization, i.e.,

add an identity matrix multiplied by small positive constant (10−10

in our implementation) to the Hessian matrix HwA
prior to taking

the inverse.

The algorithm is iterated by repeating steps 2 and 3 until all the

weight derivatives in (8) are non-negative (in practice we use a lower

threshold −10−15), or the norm of the gradient in (10) is zero (in

practice we use an upper threshold 10−15). The above stopping cri-

teria are met only when the global optimum has been found [10],

because f(w) is a convex function: the KL divergence is convex

[10], the ℓ1 norm of weights is convex, the sum of two convex func-

tions is convex, and the non-negative orthant which is the feasible

region of the weights is convex. As in [10], two Newton updates

(step 3) are done before each update of the active set (step 2).

4. EVALUATION

We evaluate the proposed method from three different angles: the ef-

fect of sparsity on the convergence of the algorithm, the actual value

of the objective function achieved in comparison to other methods,

and performance on a source separation task that depends on effec-

tive non-negative sparse coding.

As acoustic material we use synthesized mixtures of two speak-

ers. We use the subset of the GRID corpus [22] that was used as the

training set in the Speech Separation Challenge [23]. The material

consists of 34 speakers, each uttering 500 short sentences having a

small vocabulary. The sampling frequency of the signals is 25 kHz.

The test set consists of 100 signals, each of which is a mixture of

two utterances, both randomly selected from a random speaker. The

root-mean-square levels of the speakers in the mixtures were equal.

The signals were represented using their short-time magnitude

spectra. A 60-ms Hanning window with 15-ms frame hop was used

to window the signals into a sequence of frames, and the absolute

value of the discrete Fourier transform was used to calculate the ob-

servation vector within each frame. Only positive frequencies were

used, which leads to 751 frequency bins.

A speaker-dependent dictionary of atoms was generated for each

speaker using all the utterances not in the test set as training mate-

rial. The training material was represented similarly to the test data

using their short-time magnitude spectra. The observation vectors in

the training data were clustered by minimizing the KL divergence

between cluster centers and observations within a cluster, as in [10].

The cluster centers were normalized to unit ℓ2 norm and used as

atoms in a dictionary. Three different dictionary sizes per speaker

were considered: 50, 500, and 5 000 atoms.

When representing a mixture signal, the dictionaries of the

speakers within the mixture (using ground truth information about

the speaker identities) were concatenated to form dictionaries of

sizes 100, 1 000, and 10 000 atoms. The training and test sets,

dictionaries, and evaluation procedure were the same as in [10].

We first examine the effect of the sparseness parameter λ on the

convergence of the proposed method, and the effect of λ on the size

of the obtained set of active atoms. The proposed method is applied

on all the test mixtures and the size of the active set after the pro-
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Fig. 1. Number of active atoms in the optimal active set (upper
panel) and the number of iterations required for the proposed method
to converge as a function of the sparseness weight λ for different dic-
tionary sizes. Each line in both panels correspond to dictionary sizes
10 000, 1 000, and 100 atoms (from top to down).

posed method has converged and the number of iterations required

for convergence is calculated. Values 0, 0.01, 0.1, 1, and 10 of λ
were tested. Figure 1 illustrates the averages of the above metrics as

a function λ. Increasing λ decreases both the active set size and the

number of iterations, and there is apparently a high correlation be-

tween the metrics. Since the proposed method is stopped only after

it has reached the global minimum of the objective function, the re-

sults show that the method is able to converge to the global optimum

with a limited number of iterations even when λ > 0 is used. Actu-

ally, higher values of λ make the proposed method converge faster.

The sparseness regularization λ > 0 affects larger dictionaries more,

decreasing the size of the active set as λ increases.

Second, we compare the convergence speed of the proposed

active-set Newton method, ASNA, to two other successful algo-

rithms: the popular multiplicative update rules proposed in [14]

augmented with the sparseness term λ [8] (here referred to as EM),

and an alternate Newton method [21] which uses a diagonal ap-

proximation of the Hessian for the stationary-point condition of the

objective, known as DNA. All the algorithms were implemented

using MATLAB and a reasonable effort was made to use computa-

tionally efficient matrix-vector operations and to avoid loops. Im-

plementations of ASNA and DNA are available on-line at http://

www.cs.tut.fi/˜tuomasv/software.html and http:

//www.esat.kuleuven.be/psi/spraak/downloads/.

As an evaluation metric we use the value of objective function

f(w) as the function of the computation time. The objective func-

tion is convex; as a result all the algorithms will eventually con-

verge to the same value of the objective function, albeit at different

speeds. Instead of a theoretical analysis of computational complex-

ity we measure the used CPU time after each iteration since it gives

a more informative picture of the performance in practical scenar-

ios. The global minimum of objective function f(w) is different for

each observation, dictionary size, and value of λ, which makes the

comparison of results difficult. As an evaluation metric we therefore

calculate a normalized KL divergence by subtracting the globally

optimal value of the cost function, which is obtained by executing

ASNA until it converges. The average normalized KL divergence is
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Fig. 2. The average normalized KL divergence per sentence as the function of the cumulative CPU time.

calculated by averaging over all the frames and test signals.

Figure 2 illustrates the average normalized KL divergence as the

function of used CPU time for different dictionary sizes. Here, we

use λ = 1, which was found to produce the best source separation

results (shown later). For all the dictionary sizes, ASNA is able to

reach asymptotically faster convergence in comparison to the refer-

ence algorithms. Especially on two larger dictionary sizes (1 000

and 10 000 atoms) ASNA reached the lowest normalized KL di-

vergence obtained with the established EM algorithm more than 10

times faster. When comparing the results to the case λ = 0 for which

the results were presented in [10], we observe that ASNA becomes

more efficient in comparison to EM when λ = 1 is used.

Third, we evaluate the effect of λ on the source separation per-

formance. Sparseness has been found beneficial in source separa-

tion [24, 25], but there are also studies where sparseness has been

reported to not increase separation quality [3]. The difference be-

tween the above results is explained by differences in the separation

framework (unsupervised vs. supervised), acoustic material (speech

vs. music), and dictionary type (parts-based vs. clustered).

Before we proceed, it is worth summarizing the separation task:

we are given magnitude spectral vectors xz for a mixed signal Z =
X + Y . We assume that any magnitude spectrum xz for Z can be

well approximated as xz = xx+xy , where xx and xy are magnitude

spectral vectors for the constituent signals X and Y that compose

Z. The objective is to recover xx and xy from xz . We will also

assume that we are in possession of dictionaries Bx and By for the

sources that generated X and Y . The algorithm for separation is now

simple: we create Bz = [BxBy]. We then decompose xz = Bzwz

using the decomposition algorithm to be evaluated. The estimated

weight vector wz can be written as wz = [w⊤
x w

⊤
y ]⊤. The separated

estimate for xx is now obtained by ”Wiener-style” reconstruction as

x̂x = Bxwx

Bzwz
. The separated estimate for xy is obtained in the same

fashion [9]. The separated sequence of spectral vectors is reverted to

a signal as in [9].

We evaluate the actual separation performance through the

signal-to-distortion (SDR) ratio, which is calculated for each of the

speakers, in each test signal, and subsequently averaged over both

speakers and all test signals. We show the results only for ASNA.

For EM and DNA the SDR results are almost identical.

The average SDR for different dictionary sizes as a function of

the sparseness weight λ is illustrated in Figure 3. For large dictionary
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Fig. 3. Average SDRs of the separated speech as the function of the
sparseness weight λ for different dictionary sizes.

sizes having λ > 0 is found beneficial. At all dictionary sizes a too

large λ decreases the SDR. The larger the dictionary size, the bigger

the benefit of using appropriate λ. In practical usage scenarios, an

optimal value of λ can be chosen by using development material that

matches better the usage scenario.

5. CONCLUSIONS

We have proposed a novel ASNA algorithm to efficiently obtain non-

negative sparse representations for audio. The algorithm is based on

minimizing the generalized Kullback-Leibler divergence between an

observed magnitude spectrum and a non-negative linear combina-

tion of atoms, plus an ℓ1 regularization term. The proposed method

consists of an active-set method that iteratively updates a set of ac-

tive atoms that have non-zero weights, using a Newton step where

the weights of the active atoms are updated. The proposed ASNA

method was evaluated using mixtures of two speakers, and it was

shown to yield more than 10 times faster convergence in compari-

son to an established algorithm based on multiplicative update rules.

Moreover, the ℓ1 regularization was found to improve the source

separation performance.
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