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ABSTRACT
Fingerprint-based Audio recognition system must address con-
current objectives. Indeed, fingerprints must be both robust to
distortions and discriminative while their dimension must remain
to allow fast comparison. This paper proposes to restate these
objectives as a penalized sparse representation problem. On top
of this dictionary-based approach, we propose a structured sparsity
model in the form of a probabilistic distribution for the sparse
support. A practical suboptimal greedy algorithm is then presented
and evaluated on robustness and recognition tasks. We show that
some existing methods can be seen as particular cases of this
algorithm and that the general framework allows to reach other
points of a Pareto-like continuum.

Index Terms—Sparse Representation, Audio Fingerprinting

I. INTRODUCTION

I-A. Standard audio fingerprinting approaches
Audio objects recognition systems aim at the automatic retrieval

of a signal y among a collection of known sound objects {y(i)}.
In practice, such collection can be very large and sounds are
complicated objects to compare. For this retrieval to be effective,
the search must be performed efficiently, for instance by comparing
low-dimensional proxies of the objects, or fingerprints.

An audio fingerprint is a collection of signal-characteristic
features that is somehow robust to distortions and can be efficiently
compared to others. There are two main families of audio finger-
printing systems, the first one adopts a bag of features approach.
A low-dimensional vector of features (eg. Chroma, MFCC, etc..) is
used as the fingerprint. It has for instance been proposed by Haitsma
[1] with binarized Chroma. A review of such methods can be found
in [2] with more recent avatars being based on wavelet transforms
[3] or finer frequency models [4], [5].

The second family of methods is similar in spirit to some
feature extraction methods developed in image processing. It has
first emerged with the work of Wang [6] and builds on the
idea of selecting a subset of keypoints in a Time-Frequency (TF)
representation, pairing them to form landmarks and using each of
these landmarks as an index in a structured database (e.g. a hash-
table or any fast indexing system). This approach is at the basis
of the well known Shazam service [7], but also led to the works
of Cotton and Ellis[8] and Fenet et al [9] among others. While in
his seminal work [6], Wang selected keypoints as local maxima in
a simple spectrogram, Cotton and Ellis [8] use a greedy algorithm
on a multiscale Gabor dictionary and Fenet et al [9] propose a
logarithmic transform instead of windowed Fourier.

All of these methods share a common formalism, that is con-
veniently exposed using a dictionary-based point of view. Given
a dictionary Φ, one seeks a combination of k elements of Φ
(labeled atoms) that can be efficiently used as keypoints in a
fingerprinting system. State of the art methods, mainly propose
different dictionaries (e.g. Gabor [6], [7], Union of Gabor[8],
MDCT [10], Logarithmic [9]..) and selection algorithms (Local
Peak Picking [6], [7], [9], Matching Pursuit [8], [10]).

I-B. A unifying framework
Quite naturally, one would hope to design a unifying framework

for all these methods. Mostly what distinguish them is the stress
that is imposed either on the robustness of the landmarks or
their discriminative power. A robust landmark is one that remains
unaltered by distortions such as additive noise, compression, time
or pitch shifting etc. The discriminative power is harder to quantize,
but will directly be linked to recognition performances. A landmark
is discriminative when it is highly characteristic of an object
fingerprint, that is, it is unlikely to appear in the fingerprint of
an object that is fairly different.

Unfortunately, robustness and discriminative power seem to be
concurrent objectives. Indeed, such discriminant information will be
found in the high frequencies of audio signals, but these frequencies
are the most easily altered by distortions. Additionally, for the
search to be efficient, the number of keypoints and landmarks must
be kept as low as possible.

The purpose of this work is not to propose yet another audio
fingerprint system, but to generalize existing ones within a common
framework that is theoretically motivated. With this in mind, we
first propose a formulation of the fingerprint design problem as
a multi-objective optimization of a dictionary-based processing
system. Then we introduce a proxy for the discriminative power
using information theoretic tools. Using a structured sparsity model
for the keypoints (e.g. atoms of the dictionary) one can model
the probability of selecting a keypoint and even the probability
of their combinations which allows to use an entropy measure
to characterize the quantity of information carried by a single
landmark. We then propose a general greedy algorithm to build
(suboptimal) solutions and show that some particular parameter
sets correspond to the state of the art algorithms described above.

The rest of this paper is organized as follows: Section 2 exposes
our proposal to write the fingerprint design problem as a multi-
objective sparse representation one. In Section 3, we present a
structured sparsity model using Boltzmann machines and propose
a penalized greedy algorithm to build hybrid fingerprints. The
behavior of this algorithm and its relation to state of the art ap-
proaches is demonstrated in Section 4 on robustness and recognition
experiments.

II. DICTIONARY BASED AUDIO FINGERPRINTS
Let y ∈ EN be a N - dimensional discrete signal (E = R or

C) and Φ = {φi}i=1..M a dictionary of M atoms φi of same
dimension than y, one speaks of a representation ŷ of y in Φ as
a linear combinations of the atoms, i.e. ŷ =

∑M
i=1 αiφi where

the weights coefficients stacked in an M−dimensional vector α
now carry the information. The nature and quantity of information
conveyed by each (or a combination of) αi depend on how the
dictionary is designed and what a priori knowledge on the signal
is available.

In an audio fingerprint context, it is interesting to further
decompose α as the element-wise product α = x� s where x is
real or complex valued and s is called the support and restricted
to binary values: si =1 if atom i is selected as a keypoint and
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zero otherwise. In the following, the terms keypoints and atoms are
equivalent.

II-A. Formalizing fingerprint properties as constraints
In this formalism, limiting the number of keypoints can be

straightforwardly transcribed as a sparsity constraint on s. The
robustness property is harder to characterize since different types
of distortions may occur. For the sake of clarity, let us consider
only the case of additive white Gaussian noise. The best way to
resist such distortion is to select atoms minimizing a reconstruction
error. More generally, most types of robustness can be enforced by
constraints of descriptiveness of the keypoints.

Expressing the discriminative power, however, is more challeng-
ing. This can be done by using information theoretic metrics in
general and entropy in particular. Audio signals often carry more
energy in their low than high-frequencies. Corresponding keypoints
thus have a higher probability of being selected. Intuitively, they
provide a less discriminant information on a signal than the least
probable ones. If one is able to fully evaluate the probability
distribution of the support then one would want to constrain its
entropy to be the highest possible.

The problem of finding k keypoints that have maximum descrip-
tive and discriminative potentials can thus be stated as:

Pλ,k : min
s

‖y −
M∑
i=1

xi.si.φi‖2 − λHΦ(s) s.t.
M∑
i=1

si = k (1)

where HΦ(s) is the entropy of the vector s given the dictionary
and λ a penalty weight.

II-B. Probabilistic modeling of the sparse support
By definition, HΦ(s) only exists when the probabilistic distri-

bution of s is available. Experimentally, we are able to character-
ize this distribution quite efficiently. Let Φ be a time-frequency
dictionary, and let us observe the solutions to P0,k, that is the
sparse reconstruction problem without entropic constraint. Figure 1
displays the empirical distribution of the first 100 keypoints selected
with an algorithm from the Matching Pursuit (MP [11]) family as
in [8], [10]. The dictionary is a union of 7 MDCT scales replicated
such as to form a highly over-complete shift-invariant dictionary of
roughly 65 millions atoms. Atoms are uniformly selected in time
while a strong bias on their frequency localization can be observed.

At en even deeper level, one can empirically observe the
covariance matrix of the support. Figure 2 shows empirical co-
occurrences of keypoints relative to their frequency and time
index respectively. Both matrices have strong coefficients near
the diagonals, it reveals the neighborhood correlations between
keypoints close to each other in the time-frequency plane. The
frequency matrix also exhibit strong subdiagonals that reflect the
harmonic correlations.

This basically tells us that landmarks built on neighboring and
harmonically related keypoints are less informative (i.e. discrimi-
native) than others.

II-C. Relation to existing work
Problem (1) is, in general, NP-hard to solve. Many works in

the literature can be understood as suboptimal methods to tackle
this problem. For instance, the method at the basis of Shazam [7]
and its avatars [9], never explicitly express the entropic constraint.
However, their strategy is to enforce the selection of keypoints that
are spread all over the time-frequency plane. Basically, this amounts
to forbidding the construction of landmarks from neighboring
keypoints which are the less discriminative. Overall, this local peak-
picking strategy can be understood as an entropy-oriented one.

On the other hand, systems such as the one proposed in [8] put
all the emphasis on the robustness to distortions. Their landmarks

Fig. 1. Empirical Time-Frequency positions of the first 100 selected
atoms (blue dots) and their marginal distributions observed on 600
audio segments of 5 seconds each, taken from the GTZAN[12]
dataset. Signals are down-sampled to 8KHz. The marginal on
frequency is presented in log scale.

Fig. 2. Empirical Co-occurrence of Time Frequency atoms observed
on the same 600 segments.. The empirical bias has been subtracted.
Darker regions indicate higher co-occurrences. The strong diagonal
components indicates neighborhood relationships both in time and
frequency. Harmonic correlations can be observed in the frequency
matrix.

are tailored for retrieval of highly distorted objects, but it might be
at the expense of their discriminative power.

Finally, let us draw a parallel with some fingerprinting techniques
such as the Distortion Discriminant Analysis exposed by Burges et
al [13], to our knowledge, this would also fit in this framework but
with a dictionary learning paradigm.

III. PROPOSED FRAMEWORK
III-A. Structured Sparsity model

Empirical evidence suggest the sparsity pattern of the support
vector in time-frequency dictionaries is highly structured. We
propose to use Boltzmann machines as a model for the distribution
of s:

p(s) ∝ exp(bT s+ sTWs) (2)

This distribution has first been proposed in [14]. It models the
interaction in a graph of connected nodes (keypoints in our case)
using two parameters: a bias b and a connectivity matrix W . This
model recently appeared in dictionary based processing setups.
Dremeau et al [15] show that it generalizes many structured sparsity
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models. Under this model, we can evaluate the probability of a state
using the difference of energy for atom i:

∆Ei =
∑
j

wij + bi (3)

Fixing the states of all other variables, the probability of atom i
being turned on (i.e. keypoint i being selected) writes:

p(si = 1|{sj 6=i}) =
1

1 + exp (−∆Ei)
(4)

III-B. Reducing model complexity
The expressiveness of the Boltzmann machine is essentially

captured by the W matrix which is of size M×M where M is the
number of atoms in the dictionary. Clearly, for real scale data, the
resulting model complexity will become prohibitive. Fortunately,
the considered dictionaries are further structured. Assume each
atom φi can be indexed by a unique triplet (fi, ti, li) ∈ F×T ×L
of its frequency and time centroids and length. A way to drastically
reduce the complexity is to assume separability of the time and
frequency centroid variables. Such hypothesis seems reasonable
because a keypoint frequency localization is essentially linked to
other keypoints frequencies and lengths, independently of their time
position. Symmetrically, time localizations may be considered apart
from the frequency localization.

In practice, this implies cutting many vertices in the Boltzmann
machine graph, or equivalently putting many elements of W to
zero. We have seen empirically that keypoints are uniformly located
in time, we can thus drop this dependency:

bi = b(fi, ti, li) = b(fi, li) (5)

Similarly, each element wij of the W matrix can be expressed as
a product:

wij = w [(fi, ti, li) (fj , tj , lj)]

= wF [(fi, li) (fj , lj)]w
T [(ti, li) (tj , lj)]

= wF
ijw

T
ij

where wF
ij and wT

ij are taken in two factoring matrices WF and
WT . We have seen empirical estimators of such bias and W
matrices in Figures 1 and 2.

III-C. Algorithm
Addressing problem (1) is a complicated issue. Indeed, even with

λ = 0, it requires either a relaxation of the sparsity constraint or
the use of suboptimal greedy algorithms such as MP. Given that
the hard sparsity constraint is strict in this case, we have chosen
to modify an MP algorithm by simply changing the atom selection
rule.

Such algorithm makes a series of local decisions (i.e. keypoint
selection), based only on the knowledge of the previous choices (i.e.
which keypoints have already been selected). The residual signal
rn at iteration n is usually updated by subtracting from the original
signal its projection on the subspace spanned by the selected atoms.
At iteration n the decision boils down to solving:

arg max
φi∈Φ

|〈rn, φi〉|(1 + λHH(φi|sn−1)) (6)

where H(φi|sn−1) is the entropy of choosing atom φi knowing
the support sn−1 and writes:

H(φi|sn−1) = −p(φi|sn−1) log [p(φi|sn−1)]

=
log

[
1 +

∑
j∈Γn−1

wij + bi
]

1 +
∑

j∈Γn−1
wij + bi

(7)

with Γn−1 being the indices of the non zero elements of sn−1, i.e.
the keypoints selected so far. An advantage of this algorithm is that
it can be quickly implemented using existing MP libraries such as
PyMP1. Additionally, existing algorithms can be seen as particular
cases.

IV. EXPERIMENTS
In the framework described above, many parameters need to

be chosen. The dictionary Φ, the sparsity k of the representation
(i.e. the number of keypoints), λH , the bias b and the W matrix.
We will adopt the notation W03 and C10 by reference to [6] and
[8] respectively. Note however that all results presented here are
obtained with our own implementation of these methods. W03
corresponds to a local peak picking strategy with a monoscale
Gabor dictionary. C10 is equivalent to our algorithm with λH being
set to 0. We investigate hybrid strategies with a simple synthetic
frequency bias b and a neighbor penalizing matrix W .

Experiments are run in a framework that is similar in nature
to the one presented in [6], [9], [8]. Landmarks are binarized and
stored as index keys in a Hashtable implemented using the open
source Berkeley DataBase C Library2. Each key is a combination
(f1, f2,∆t) where f1 and f2 are the frequency centroids of the
two keypoints and ∆t the difference between their time centroids.
Each key corresponds to a value that is a combination of the file
index and the time of occurrence of the landmark in the file. In this
work we are interested in comparing the keypoints and landmarks
selection procedures. For fair comparison, the hashing and key
formatting parameters are not optimized to any of the methods
but fixed to common values.

In the following, a set of parameters will be identified by the
triplet (λH , b,W ). Whenever the bias (respectively W ) is set to
zero we will write λH (0,W ) (respectively λH (b, 0)). In this work
we use a synthetic bias that is a simple decreasing exponential
of the keypoints frequencies. W is decomposed in WT and WF

that are zeros everywhere except near the diagonals. This particular
setting corresponds to penalizing the selection of keypoints in the
neighborhood of previously selected ones. For now we do not
penalize harmonic relationships. Non zero coefficients in WT and
WF are adapted to the desired sparsity level and corresponds to
the same Time-Frequency widths as the ones used in W03 for local
peak picking.

IV-A. Keypoints and Landmarks entropy
We expect keypoints selected with the entropic penalization to

have a distribution somehow more ”uniform” that those selected
on purely energetic considerations. Indeed Figure 4 shows empir-
ical distributions measured on the decomposition of 600 random
5 second length segments taken from the GTZAN[12] dataset.
Keypoints and Landmarks selected with the W03 method are almost
uniformly distributed, while the ones built by C10 exhibit a strong
bias towards low frequencies. The hybrid approach allows to reach
a new compromise.

An illustration of this behavior is provided in Figure 3. For
4 different settings, 100 landmarks are built and figured with
black segments. Recall that C10 is similar to [8]. The algorithm
selected atoms on a purely energetic basis in a union of 6 scales
Gabor shift-invariant dictionary. A first hybrid approach (labeled
λH = 5 (0,W )) uses the same dictionary with λH = 1 the bias
is set to zero and W as described above. The penalization led
to the selection of a slightly different set of keypoints. A second
hybrid approach (labeled λH = 10 (b,W )) uses both W and
the bias b to penalize the selection. This time the algorithm has
selected a very different set of keypoints. Finally, the last case

1https://github.com/mmoussallam/PyMP
2http://www.oracle.com/us/products/database/berkeley-

db/overview/index.html
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Fig. 3. Time-frequency landmarks built by the algorithm with varying parameters on a 5s audio excerpt of female speech. Each case has
built 100 landmarks. (a): C10 (λH = 0) (b): λH = 1 (0,W ) (c): λH = 10 (b,W )(d): W03
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Fig. 4. Empirical distribution of landmarks. Flatter distribution has
higher entropy and corresponds to cases where each landmark is
more discriminant. Landmarks are indexed by increasing frequen-
cies of the first keypoint.

(W03) use a monoscale Gabor dictionary with 25% overlap and a
selection procedure equivalent to [6]. This is similar to what could
be obtained with no bias, the same W and λH = +∞.

IV-B. Robustness and Recognition performances
The primary objective of a fingerprint system is its recognition

performance. The main parameter affecting the quality of the
results is the sparsity, or equivalently the number of landmarks
per seconds on which to base the decision. For each query, the
system returns a best candidate file in the database and an estimated
time of occurrence. The score is simply the ratio of the number of
correctly retrieved segments over the number of queries. To assess
for the robustness of the fingerprints, we measure the Proportion
of Identical Landmarks (PIL) that remain unaffected by an additive
white Gaussian noise.

Using different parameters a learning an a testing phase are run.
During the learning phase, a database of fingerprints is built out
of the 1000 files of the GTZAN dataset[12]. Each file is sliced in
5 seconds-long segments with a 50% overlap. On each segment
the number of allowed keypoints is fixed to the sparsity level
k. During the test phase, 2500 randomly chosen 5 seconds-long
segments are used for queries. The testing segments thus have a
very low probability of being aligned with the learning ones. The
compromise between the two concurrent objectives is illustrated on
Figure 5. C10 is the most robust method but performs poorly on
the recognition task at low levels of sparsity. On the opposite, W03
reaches very good recognition scores at low sparsities, but is also
the most affected by the additive noise. Between them, the hybrid
approaches allows to reach different compromises.

10 5 0 5 10 15 20 25 30
SNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

PI
L

W03
C10

λH =1 (b,W)
λH =10 (b,W)

20 40 60 80 100
Sparsity k

20
30
40
50
60
70
80
90

100

Re
co

gn
iti

on
 ra

te
 (%

)

W03
C10
λH =1 (b,0)

λH =1 (b,W)
λH =10 (b,0)
λH =10 (b,W)

Fig. 5. Top: Robustness results with synthetic W and varying
λH averaged over 5 trials of random Gaussian noise on each of
600 random segments of 5 seconds taken in the GTZAN dataset.
Bottom: Recognition performances for isolated 5sec audio excerpts
from the complete dataset with various settings, function of the
number of keypoints k.

V. DISCUSSION
The proposed framework is flexible and there are many param-

eters one can modify. The role played by each of this parameters
need to be further investigated. Let us stress that the expressive
power of the model is quite high and one could use it to introduce
more prior knowledge on the data. Taking harmonic correlations
into account would be a natural next step. More generally, specific
relationships could be learn on a variety of sound classes, such as
speech, instrumental or environmental.

In this work, we avoided the issue of inferring the Boltzmann
machine parameters by using empirical estimators. It is arguably
not satisfying, but allowed us to conduct these proof of concept
experiments. Moreover, the suboptimal strategy proposed here to
address Problem (1) has also been chosen for its simplicity and
serve as comparison basis. Future work will investigate smarter
optimization scheme, such as Bayesian versions of MP (e.g. as in
[15] with Boltzmann machines) or convex relaxations methods.
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