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ABSTRACT

In this paper we show that the spatially localized spherical harmonic
transform (SLSHT), which represents a signal on the 2-sphere
in the spatio-spectral domain, can be efficiently computed using
new kernel-based formulations. In addition to the standard spatio-
spectral domain, we show there are three other related transforms
that provide alternative representations in the spatio-spatial, spectro-
spatial and spectro-spectral domains. We provide inversion results
that extend available results for the SLSHT. We show that for signals
on the 2-sphere band-limited to degree L, the computational com-
plexity using our class of kernel-based SLSHT transforms is O(L*)
and outperforms the previous best known fast methods, which have
complexity O(L?).

Index Terms— 2-sphere; unit sphere; spherical harmonic trans-
form; spatio-spectral domain; spatially localized spherical harmonic
transform; fast transforms.

1. INTRODUCTION

For some decades the short-time Fourier transform (STFT) and its
variants have been used to generalize classical filtering to the joint
time-frequency domain and this provides the ability to better handle
signals arising from time-varying and non-stationary systems [1].
Developing methods analogous to the STFT to deal with processing
of signals defined on the 2-sphere (domain) is similarly of interest
because signal features may be localized spatially (on the 2-sphere)
and spectrally (where the spectral representation is obtained from
the spherical harmonic transform [2]). These signals on the 2-sphere
arise in a number of applications including geodesy [3], cosmology
[4], spherical harmonic computerized lighting [5], medical image
analysis [2], and wireless channel modeling [6].

1.1. Relation to Prior Work

On the 2-sphere the analogue of the STFT is called the spatially
localized spherical harmonic transform (SLSHT) [7]. It has enabled
the use of spatially varying spectral filtering on the 2-sphere for
localized analysis using the joint spatio-spectral domain [8]. Along
with a directional-SLSHT generalization, fast spectral computa-
tional methods have been developed [9]. In [7] the original signal
(in spectral form) was shown to be recoverable by spatial marginal-
ization of the SLSHT. In this paper we show how to recover spatial
representation of the original signal by spectral marginalization.
The invertibility window conditions differ to those required for spa-
tial marginalizing the SLSHT [7] and lead to new insights into the
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design of window functions used for the localized spatial analysis.
This answers the question in the positive of whether there are two
SLSHT marginalization strategies to recover the signal as there are
for the STFT case.

This paper deviates most markedly from the standard SLSHT
formulations in the use of an isotropic kernel function that fully
captures the symmetry conditions of the SLSHT definition [7]. This
new formulation significantly simplifies the derivation of key known
identities and reveals new SLSHT-inversion results. This isotropic
kernel also plays a direct role in defining three new transforms,
closely related to the SLSHT, that provide representations in the
spatio-spatial, spectro-spatial and spectro-spectral domains. The
corresponding inversion results, which show how to recover the
original (or processed) signal from these joint domains, are also
given. Some of these results are known or have been implicitly used
in other works, but this paper introduces new identities and a more
complete theory.

Wavelets provide an alternative approach to localized signal pro-
cessing on the 2-sphere and enable filtering at different scales [10—
14]. These lead to a space-scale representation and are an alterna-
tive to the SLSHT approach. However, unlike the Euclidean case,
dilations on the sphere or the spherical harmonic spectrum are not
straightforward or completely natural. In many cases, one is still
interested in a classical spherical harmonic spectral interpretation
of signals and their processing and this is furnished through the
SLSHT methods (and related transforms defined herein). Further,
the existence of fast processing methods for the standard SLSHT
and its directional extension [9] and presentation of even faster pro-
cessing methods based on a new spatio-spatial domain in this paper,
strengthens its case for processing in applications.

1.2. Paper Structure

In Section 2 we show how to reformulate the standard SLSHT using
an isotropic kernel. In Section 3 we develop new marginalization
methods for SLSHT inversion. In Section 4 we introduce new spatio-
spatial, spectro-spectral and spectro-spatial variants of the SLSHT.
Section 5 shows these new domains and isotropic kernel techniques
yield state of the art computational performance.

2. FORMULATION WITH AN ISOTROPIC KERNEL

Relevant background to signals on the 2-sphere S?, inner products
and spherical harmonics are given in the Appendix. For a complex-
valued spatial signal on the 2-sphere, f(Z), the spherical harmonic
transform (SHT) is given by
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The discrete components, (f)," for all possible values of the degree
¢ e {0,1,2,...} and order m € {—¢, ..., £} give the spectral rep-
resentation of the signal. The inverse spherical harmonic transform
(ISHT), is given in (18) in the Appendix. This spectrum is the gen-
eralization of classical Fourier series for 1D periodic signals.

2.1. Standard Formulation of SLSHT
The central equation in the SLSHT [7-9, 15] is the following:

Definition 1 (Spatio-Spectral SLSHT [7]) For a spatial signal on
the 2-sphere, f(x), the spatio-spectral SLSHT is given by
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where h(y) is an azimuthally symmetric window function satisfying
(h, Y™y =0, ¥m 0. (2b)

In this definition (D(Z)h)(¥) is the window h(¥) rotated such that
it is rotationally symmetric about the point & € SZ.

2.2. Interpretation of SLSHT

The SLSHT g¢(Z;¢,m) has straightforward interpretations. The
window h(-) is typically chosen to concentrate analysis into a local
region on the sphere centered at an arbitrary point Z. For the SLSHT
g(2; £, m): (i) by fixing the spatial argument & € S? and varying the
spectral degree ¢ and order m we get information of which spherical
harmonics contribute most to explain that localized portion of the
spatial signal f(-) within the windowed region centered at point
x € §?%; and (11) by fixing both the spectral degree ¢ and order m
and varying Z € S® we can infer from which parts of the sphere
the signal most strongly contribute to the (global) ¢, m-spherical
harmonic coefficient.

In both interpretations we have the quantities in the form of a
distribution, not necessarily normalized, across the spatio-spectral
representation. These interpretations are extended further in Section
4 so that we can develop new transforms that go beyond the SLSHT.

2.3. SLSHT Reformulation with Isotropic Convolution Kernel

We can expand the azimuthally symmetric window function h(Z)
in the order /. = 0 spherical harmonics, Y (Z), with coefficients
(h)? = (h, YY),

h@) =S W@ =St 2 rE ),
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where & - 1] = cos 0 (7] is the north pole). Then it can be shown that
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where the newly defined function H(z) is defined on the interval
z € [—1,+1] and synthesizes the window in terms of a Legendre
polynomial expansion. To recover (h)? from the window h(Z) we
then need to perform the spherical harmonic transform

(2 = (n.YE) = [ h@ V@) ds(@)
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which shows how to recover (h)J using the Legendre transform on
H(z) = H(cos?0).

So, using (3), the SLSHT, (2a) with (2b), can be reformulated
leading to our first result:

Property 1 (Kernel-Based Spatio-Spectral SLSHT) The spatio-
spectral SLSHT [7] given by (2a) can be written

9(Z; 4,m) = ; H(@ - 9)f(9)Y,"(9) ds(y), ®)
where
=S X G ) ©)
=0
and coefficients {(h)): £ =0,1,2,...} given by (4).

This reveals the SLSHT as being a hybrid of isotropic convolution
[16] and the SHT (1). Because of the symmetry of the window, con-
volution present in the reformulation (5) and direct spatial weighting
present in the original (2a) are equivalent. The function H(-) is re-
ferred to as the isotropic convolution kernel function derived from
the window [16].

3. SPATIO-SPECTRAL SLSHT-INVERSION

A natural objective is to recover the original signal, either in spatial
form f () or spectral form (f);", from the (spatio-spectral) SLSHT
g(@; ¢, m). This is called (spatio-spectral) SLSHT-inversion. Per-
fect recovery is tantamount to the statement that forming the SLSHT
is information preserving, and therefore, a feasible setting to per-
form spatio-spectral signal processing. In this section we advance
the theory of (spatio-spectral) SLSHT-inversion and improve on the
findings in [7].

3.1. Spatial Marginal SLSHT-Inversion

Using the new SLSHT expression (5) the SLSHT-inversion given
in [7] can be derived in a simpler way. Consider the spatial marginal-
ization of (5)

[ 9@ tom) is(@)
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where using (3) we have
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since [., Po(Z - Y)ds(Z) = 4mde0, where oz, denotes the Kro-
necker delta function. Therefore, we have shown:

Property 2 (SLSHT-Inversion [7]) The spectral signal (f);" can
be recovered from the SLSHT g(x; £, m) by spatial marginalization:

(N = m /§2 g(&; ¢, m) ds(z), where (h)g #0 (7)

and (h){ is given in (4) with £ = 0.

This shows spectral recovery (SLSHT-inversion) is possible when-
ever (h)) # 0, that is, when the window h(Z) has a non-zero DC
value, (4). In summary, this inversion result (7) is not new, but the
derivation is greatly simplified from that given in [7]. The next in-
version result, in contrast, is new.



3.2. Spectral Marginal SLSHT-Inversion

This time we marginalize the spectral argument of the SLSHT with a
spherical harmonic weighting to reveal that we can recover the signal
in spatial form, f(x):

> g(@;e,m)Y{" (@)
’ H(@ Zn

s2
[ @ 5)[(5)6(@ -

V(@) ds()
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where 0(Z — y) denotes the 2-sphere Dirac delta function [15, p.95].
‘We summarize this as our second novel result:

Property 3 (SLSHT-Inversion) The spatial signal f(Z) can be re-
covered from the SLSHT g(x; £, m) by weighted spectral marginal-

ization in the form
Z 9@

and H (+) is the isotropic convolution kernel given in (3).

z; 0, m)Y;" (z), where H(1) #0

Since H(cos0) = H(1) then this corresponds to the value of the
azimuthally symmetric window at its center (or north pole 7).

4. FOUR VARIANTS OF SLSHT REPRESENTATION

The spatio-spectral domain of the SLSHT is natural with the inter-
pretation we gave earlier in Section 2.2. However, here we show new
representations, spatio-spatial, spectro-spectral and spectro-spatial,
which are equivalent but offer advantages in different signal process-
ing contexts depending on the structure of signals, representations
and the computational requirements for signal processing.

4.1. Spatio-Spatial Domain

The spectral argument (being both the degree and order) of the
(spatio-spectral) SLSHT can be mapped to its own distinct spatial
argument in an elementary way to obtain a spatio-spatial represen-
tation defined on S? x S? as follows:

Definition 2 (Spatio-Spatial SLSHT)
is defined by

The Spatio-Spatial SLSHT

2) £ 9@ 6m)Y"(2), @,z€S, ®)

which is the ISHT in the second argument of the SLSHT.

To recover the standard (spatio-spectral) SLSHT from g(Z; Z) one
takes the SHT in the second argument z:

|, 9@ 2T @ ds(2) = g(@stm) ©)

These transforms, (8)—(9), are depicted, along with later definitions
and results, in the upper portion of Fig. 1.

Now using analysis that closely mimics what was done in Sec-
tion 3.2, we have

> g(@; 6, m)Y"(2)

Lm
[ HG - 5)1@)(z -

5) d0(3) e (3).

We incorporate this into the following statement:
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g(@;¢,m) = 9(z; 2)
? 2-ISHT ?
1 1-ISHT 11-ISHT
1 1
18HT | | 1sHT | |
i i
i 2-SHT i
g(p,q;4,m) S - 9(p,¢; 2)
2-ISHT

Fig. 1: Transformations between the four variants of the SLSHT.
In notation, 1-SHT/2-SHT denotes the spherical harmonic transform
(SHT) on the 1st/2nd argument. Similarly 1-ISHT/2-ISHT denotes
the inverse spherical harmonic transform (ISHT) on the 1st/2nd ar-
gument, as given in the Appendix (18).

Property 4 (Kernel-Based Spatio-Spatial SLSHT) The
spatial SLSHT transform, (8), of a signal f(-) can be written

9(@;2) 2 H(Z - 2)f(2), z,z€S’, (10)

using the isotropic convolution kernel H(-), given in (3).

spatio-

Using (10) we can see that (9) is equivalent to the SLSHT refor-
mulation (5). The spatio-spatial SLSHT is clearly equivalent to the
(spatio-spectral) SLSHT but provides an interpretation and process-
ing in the S? x S? domain. In fact, as defined, it is independent of
any spherical harmonics because it has no spectral components.

As a corollary of Result 4, letting & = Z, we have:

Property 5 (Spatio-Spatial SLSHT-Inversion) The spatial signal
f (&) can be recovered from the spatio-spatial SLSHT, g(Z; Z), as
follows:

(@) = ﬁg(fﬁ; %), where H(1) #0

and H (+) is the isotropic convolution kernel given in (3).

This is presented as a simple method for inverting the spatio-spatial
SLSHT (10), but is not the only inversion expression possible.

Property 6 (Spatio-Spatial SLSHT Energy) The total energy in
the spati() spatial SLSHT g(x; Z) is the product of energy of the
signal f () and energy of the symmetric window function h():

loll® // )= P12 an

To show this we use (10) in conjunction with (3) and the orthogonal-
ity of the Legendre polynomials. From the definition of ||g||* in (11)
we have:

9(7: ) ds(&) ds(2

lal? = 30 3 YEEDOERD ot

£=0 ¢'=0

x / 1@7E( / Pz(a2)13@,@.2)615@))@15(2)
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IR 1LA112.

4.2. Spectro-Spectral Domain

The spatial argument of the (spatio-spectral) SLSHT can be mapped
to its own distinct spectral argument of degree p and order ¢ to yield
a spectro-spectral representation defined on £2 x £



Definition 3 (Spectro-Spectral SLSHT) The spectro-spectral SL-
SHT is defined by

soaitom) 2 [ g@LmV@ds@.  (2)
S
which is the SHT in the first argument of the SLSHT.

This (and inverse) are depicted in the left portion of Fig. 1. Then we
have, using (5):

Property 7 (Kernel-Based Spectro-Spectral SLSHT) The spect-
ro-spectral SLSHT transform, (12), of a signal f(-) using the
isotropic convolution kernel H(-), given in (3), can be written

g(p,q;¢,m) = /S2 ngw Q)
x Y, (y) Yy (z) ds(y) ds(z), (13)

using the isotropic convolution kernel H(-), given in (3).

In this case spectral recovery (SLSHT-inversion) is particularly sim-
ple from the spectro-spectral SLSHT (12) or (13)

m _ 9(0,0;£,m)
(N =75
‘ (h)g
and (h) is given in (4) with £ = 0. This is established by comparing
(7) with (12) for p = ¢ = 0. The spectro-spectral SLSHT transform
being defined on £2 x £2 has made it a natural computational domain
for fast spectral-based algorithms [9].

where (h)g # 0 14

4.3. Spectro-Spatial Domain
Definition 4 (Spectro-Spatial SLSHT) The spectro-spatial SLSHT
is defined by

o005 2 [ o@D @ds(@), 2es,  a3)
which is the SHT in thej‘irst argument of the spatio-spatial SLSHT.

This is represented on the right portion of Fig. 1. This figure also can

be used to determine the two transforms to obtain the spectro-spatial

SLSHT ¢(p, g; Z) from the spatio-spectral SLSHT g¢(&; ¢, m).
Combining (15) with (10) we obtain:

Property 8 (Kernel-Based Spectro-Spatial SLSHT) The spectro-
spatial SLSHT transform, (15), of a signal f(-) can be written

= /(@)

using the isotropic convolution kernel H(-), given in (3).

H(Z-2)Y{(@)ds(z), ZeS* (16)

§2

9(p,q; 2)

To obtain spatial recovery (SLSHT-Inversion) we have
PG
Var Js2

but by straightforward considerations

9(0,0; H(z - 2)ds(z)

. H(Z - 2)ds(&) = Van(h)g.

Therefore, we have shown:
Property 9 (Spectro-Spatial SLSHT-Inversion) The spatial sig-

nal f(Z) can be recovered from the spectro-spatial SLSHT, g(p, q; Z),
as follows:

~ _ 9(0,0;2)
[(z) = W»

and (h)} is given in (4) with £ = 0.

where (h)) # 0
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Alternatively, we can do spectral marginalization,

which recovers f(Z) up to constant H (1) # 0.

5. APPLICATION OF SPATIO-SPATIAL SLSHT

We show that the SLSHT (and any of the four variants) can be ef-
ficiently computed using the kernel-based formulation of SLSHT
presented here (more specifically exploiting our newly introduced
spatio-spatial SLSHT) as compared to the standard formulation [9].

For our comparison we assume that both the signal f and win-
dow h are band-limited to degree L in the sense that (f);" =
(h)7* = 0 forall £ > L. Thereby the SHT can be computed exactly
using 2L% number of samples on the sphere with computational
complexity of the order O(L?) [17]. Using the standard formulation
of SLSHT, g(&; ¢, m) can be computed for ¢, m and all number of
samples on the sphere with computational complexity of O(L®) [9].
For the kernel-based spatio-spectral formulation in (5), the compu-
tation of g(Z; ¢, m) is again of the order O(L?®), since we need to
take the SHT for each sample Z € S® on the sphere and the num-
ber of samples are of the order O(L?). However, the kernel-based
spatio-spatial SLSHT representation g(Z; Z) in the spatio-spatial
domain given in (10) can be computed in O(L*) as it only requires
the product of the kernel H(Z - 2) and f(Z) for each #,2 € S°.
Once the spatio-spatial representation g(Z;2) is computed, each
representation in other three domains can be computed in O(L?) by
taking the SHT in arguments Z or z or both.

APPENDIX: SPHERICAL HARMONICS
Define the 2-sphere by S* 2 {& € R®: |z| = 1} and the inner
product of two functions whose domain is the 2-sphere

s [ 1@ as) a7

where Z £ (sinfcosp,sinfsinp,cosd) € S* C R*® and
ds(x) = sinfdfdyp is the uniform surface measure satisfying
Js2 ds(&) = 4. Finite energy functions are those that satisfy

Fel’S) <= Ifll2 (£, N < co.

The spherical harmonics are defined through

m 2£+1Z_m' m im moos
Y™ (0, 0) 2 WPZ (cos0)e"™? = Y," (z),
where £ € {0,1,...} is the degree, m € {—¢,—¢ +1,..., 0} is the
order, the associated Legendre functions are [15]
m -1 m m dé+'m
pr e GOy 0y,
form € {0,1,...,¢}, and satisfy

P
C+mn "
The inverse spherical harmonic transform (ISHT) is given by

5= S (rv@), (18)
m=—/

£=0

P, (z)=(-1)™ (), me{0,1,...,¢}.

2 (f,YM).

where the coefficients are (f)}"



(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(7]

6. REFERENCES

L. Cohen, Time-frequency analysis: Theory and applications.
Prentice-Hall, Inc., 1995.

B. T. T. Yeo, W. Ou, and P. Golland, “On the construction of
invertible filter banks on the 2-sphere,” IEEE Trans. Image Pro-
cess., vol. 17, no. 3, pp. 283-300, Mar. 2008.

M. A. Wieczorek and F. J. Simons, “Localized spectral analysis
on the sphere,” Geophys. J. Int., vol. 162, no. 3, pp. 655-675,
Sep. 2005.

D. N. Spergel, R. Bean, O. Dor¢ et al., “Three-year Wilkinson
Microwave Anisotropy Probe (WMAP) observations: Implica-
tions for cosmology,” The Astrophysical Journal Supplement
Series, vol. 170, no. 2, pp. 377408, 2007.

C. Han, B. Sun, R. Ramamoorthi, and E. Grinspun, “Fre-
quency domain normal map filtering,” ACM Trans. on Graph-
ics, vol. 26, no. 3, pp. 28:1-28:12, Jul. 2007.

R. A. Kennedy, P. Sadeghi, T. D. Abhayapala, and H. M. Jones,
“Intrinsic limits of dimensionality and richness in random mul-
tipath fields,” IEEE Trans. Signal Process., vol. 55, no. 6, pp.
2542-2556, Jun. 2007.

Z. Khalid, S. Durrani, P. Sadeghi, and R. A. Kennedy,
“Spatio-spectral analysis on the sphere using spatially local-
ized spherical harmonics transform,” IEEE Trans. Signal Pro-
cess., vol. 60, no. 3, pp. 1487-1492, Mar. 2012.

Z. Khalid, P. Sadeghi, R. A. Kennedy, and S. Durrani, “Spa-
tially varying spectral filtering of signals on the unit sphere,”
IEEE Trans. Signal Process., vol. 61, no. 3, pp. 530-544, Feb.
2013.

Z. Khalid, R. A. Kennedy, S. Durrani et al., “Fast directional
spatially localized spherical harmonic transform,” /[EEE Trans.
Signal Process., vol. 61, no. 9, pp. 2192-2203, May 2013.

F. J. Narcowich and W. J. D., “Nonstationary wavelets on the
m-sphere for scattered data,” Appl. Comput. Harmon. Anal.,
vol. 3, no. 4, pp. 324-336, Oct. 1996.

J.-P. Antoine and P. Vandergheynst, “Wavelets on the 2-sphere:
A group-theoretical approach,” Appl. Comput. Harmon. Anal.,
vol. 7, no. 3, pp. 262-291, 1999.

P. Audet, “Directional wavelet analysis on the sphere: Appli-
cation to gravity and topography of the terrestrial planets,” J.
Geophys. Res., vol. 116, Feb. 2011.

J. D. McEwen, M. P. Hobson, D. J. Mortlock, and A. N.
Lasenby, “Fast directional continuous spherical wavelet trans-

form algorithms,” IEEE Trans. Signal Process., vol. 55, no. 2,
pp- 520-529, Feb. 2007.

Y. Wiaux, J. D. McEwen, P. Vandergheynst, and O. Blanc,
“Exact reconstruction with directional wavelets on the sphere,”
Mon. Not. R. Astron. Soc., vol. 388, no. 2, pp. 770-788, 2008.

R. A. Kennedy and P. Sadeghi, Hilbert Space Methods in Sig-
nal Processing. Cambridge, UK: Cambridge University Press,
Mar. 2013.

R. A. Kennedy, T. A. Lamahewa, and L. Wei, “On azimuthally
symmetric 2-sphere convolution,” Digital Signal Process.,
vol. 5, no. 11, pp. 660-666, Sep. 2011.

J. D. McEwen and Y. Wiaux, “A novel sampling theorem on
the sphere,” IEEE Trans. Signal Process., vol. 59, no. 12, pp.
5876-5887, Dec. 2011.

314



