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ABSTRACT
In this paper we consider a diffusion field induced by multi-
ple point sources and address the problem of reconstructing
the field from its spatio-temporal samples obtained using a
sensor network. We begin by formulating the problem as a
multi-source estimation problem – so estimating source lo-
cations, activation times and intensities given samples of the
induced field. Next a two-step algorithm is proposed for the
single (localized and instantaneous) source field. First, the
source location and intensity are estimated by applying the
“reciprocity gap” principle; we show that this step can also
reveal locations of multiple non-instantaneous sources. In the
second step, we use an iterative method, based on Cauchy-
Schwarz inequality, to find the activation time given the esti-
mated location and intensity. Finally we extend this algorithm
to the multi-source field and present simulation results to val-
idate our findings.

Index Terms— Spatio-temporal sampling, sensor net-
work, diffusion process, reciprocity gap, Prony’s method

1. INTRODUCTION

Numerous biological and physical phenomena are modeled
by the diffusion equation: temperature variation in fluids,
disease epidemic dynamics, population dispersion and bio-
chemical substance release are typical examples of such phe-
nomena. Whilst the use of sensor networks to obtain spatio-
temporal samples of these physical phenomena is becoming
increasingly commonplace, the space-time dimensions of
these diffusion processes are generally inhomogeneous. Thus
regular multidimensional sampling theory [1] can in general
no longer be applied. A robust and efficient solution to this
sampling and reconstruction problem will strongly impact
several real-life applications such as, pollution detection [2],
environmental monitoring [3] and energy efficiency monitor-
ing in large data center clusters [4, 5].

In this paper, we will consider the problem of sampling
and reconstructing fields governed by the diffusion equation.
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In other words we will attempt to infer the entire field distri-
bution given a limited number of observations obtained using
a sensor network. Such a problem is widely known to be ill-
posed [6], but can be regularized by imposing a model on the
sources of the field. This approach transforms the problem
into a parametric source estimation problem. Indeed works
in the area have focused mainly on source localization. For
example, Lu and Vetterli proposed two methods for source
localization, namely spatial super-resolution [7] and an adap-
tive sampling scheme [8]. A localization method based on
L1 constrained optimization is introduced in [9]. Ranieri et
al proposed a compressed sensing approach [10], whilst Auf-
fray et al proposed a method based on the reciprocity gap
[11]. Ranieri and Vetterli [12] have also considered uniform
spatial sampling and reconstruction using classical interpola-
tion techniques. While Rostami et al [13] introduced diffusive
compressive sensing (DCS) to solve the problem.

In this paper, we propose a source estimation-based
method – that is we fully estimate the sources inducing
the field and rely on the premise that fully specifying these
sources allows for complete field reconstruction. We assume
multiple spatially localized sources and take advantage of the
reciprocity gap principle [11] to estimate the initial source
intensities and locations, whilst the activation times are re-
trieved by performing a simple linear search. Given that we
have access only to sparse field measurements, we adapt the
reciprocity gap method to operate properly within this new
context. In particular, contrary to common practice [11, 14],
we utilize sensor measurements both along and inside an ar-
bitrary domain boundary to perform source localization using
measurements taken over a short time interval. This allows
estimation of intensities, locations and activation times of
active sources with high accuracy, even in the presence of
noise. Furthermore, we also propose the use of a new test
function that improves the stability of the localization step.

The rest of this paper is organized as follows. Section 2
formally discusses the sampling and reconstruction problem
in the source estimation setting. Section 3 presents the reci-
procity gap method for source intensity and location retrieval,
and we propose a linear search method to estimate the ac-
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tivation time; we conclude the section by combining these
solutions to give a single source estimation algorithm. In
Section 4 we generalize the single source algorithm to the
multiple-source case. We validate our findings through nu-
merical simulations in Section 5 and conclude the paper in
Section 6.

2. PROBLEM FORMULATION

In what follows we will formulate the diffusion field sam-
pling and reconstruction problem. Firstly let us consider an
unknown point source distribution f within a region Ω, that
induces a diffusion field u. Such a phenomenon is governed
by the diffusion equation;

∂

∂t
u(x, t) = µ∇2u(x, t) + f(x, t), (1)

where µ is the diffusivity of the medium through which the
field propagates, x ∈ Rd denotes the spatial domain, whilst t
is the temporal domain. Moreover, from the theory of Green’s
functions a solution to this PDE is [15]:

u(x, t) = (g ∗ f)(x, t), (2)

where g(x, t) = 1
(4πµt)d/2

e−
‖x‖2
4µt H(t) is the Green’s func-

tion of the diffusion field, and H(t) is the unit step function.
The implication of Equation (2) is such that finding f given
discrete measurements of u means the entire field can be per-
fectly reconstructed. We consider the case where the sources
are localized in space and concentrated in time leading to the
following source parameterization:

f(x, t) =

M∑
m=1

cmδ(x− ξm, t− tm), (3)

where cm, ξm, tm is the concentration, location and activation
time respectively of the m-th source in a field induced by M
sources.

Hence the sampling and reconstruction problem is equiv-
alent to finding the source parameters {cm, ξm, tm : m =
1, . . . ,M} given spatial and temporal samples of the diffu-
sion field u. In our analysis we consider the 2-D problem
(d = 2) and assume that we have access to field measurements
ϕn(tl) = u(xn, tl), obtained at instants tl for l = 0, . . . , L
and from sensors at spatial locations xn for n = 1, . . . , N
situated along an arbitrary domain boundary ∂Ω and its en-
closed region Ω. We note that the domain boundary ∂Ω may
be arbitrarily chosen provided all active sources are contained
within its domain Ω (see Figure 1). For simplicity however,
our simulations will consider a circular boundary with sen-
sors evenly distributed along the boundary and uniformly dis-
tributed within the region enclosed. We also briefly address
the transient source localization problem, i.e. finding the lo-
cations {ξm : m = 1, . . . ,M} for sources with distribution:

f(x, t) =

M∑
m=1

cme
αm(t−tm)δ(x− ξm)H(t− tm), (4)
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Fig. 1. Sensor placement along and within the boundary.

where αm < 0 is the decay coefficient.

3. DIFFUSION SOURCE ESTIMATION

In this section we first use reciprocity gap functional (RGF)
theory to derive a Vandermonde system which can be solved
for the intensities and locations of multiple point sources.
Next we address the single source activation time estimation
problem given estimates of its intensity and location. Finally
we present the single source estimation algorithm.

3.1. Multiple Source Localization and Intensity Estima-
tion

Reciprocity gap functionals are derived by comparing a field
with its adjoint ψ [16, 17]. In our setting ψ must satisfy the
time-reversed diffusion equation:

∂ψ

∂t
+ µ∇2ψ = 0 in Ω. (5)

Moreover, for the domain Ω with a sufficiently smooth bound-
ary ∂Ω Green’s second identity may be used to relate the field
at the boundary to that inside the domain as follows:∫

Ω

∂

∂t
(ψu) dV−µ

∮
∂Ω

(ψ∇u− u∇ψ)·n̂∂Ω dS =

∫
Ω

ψf dV

(6)
where n̂∂Ω is the outward pointing unit normal vector to
∂Ω. Henceforth we shall denote the “reciprocity gap,”
the left hand side of Equation (6) as R(ψ, t) for concise-
ness. Hence the reciprocity gap in time integrated form,
on some interval t ∈ [0, T ] is such that

∫ T
0
R(ψ, t) dt =∫

Ω
ψu(x, T ) dV − µ

∮
∂Ω

(ψ∇U − U∇ψ) · n̂∂Ω dS, where
U(x) =

∫ T
0
u(x, t)dt. Therefore∫ T

0

R(ψ, t) dt =

∫ T

0

∫
Ω

ψf dV dt. (7)
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Combining Equations (3) and (7) yields
∫ T

0
R(ψ, t)dt =∫ T

0

∫
Ω
ψ
∑M
m=0 cmδ(x− ξm, t− tm)dV dt. We thus set

ψ → Ψk(x) = e−k(x1+jx2), where k = 0, 1, . . . ,K, and this
results in the Vandermonde system:

R(k) =

M∑
m=1

cme
−k(ξ1,m+jξ2,m), k = 0, 1, . . . ,K (8)

where R(k) =
∫ T

0
R(Ψk, t)dt. This system can then be

solved using Prony’s method [18]. Indeed this choice of
test function, a decaying complex exponential rather than a
complex polynomial, improves the numerical stability of the
source localization step.

Disposed with the spatial samples (in Ω and along ∂Ω)
as well as temporal samples (over [0, T ]) of the diffusion
field, it is possible to obtain an estimate of the quantity∫ T

0
R(Ψk, t) dt by properly combining the sensor measure-

ments {ϕn(tl) : n = 1, . . . , N, l = 0, . . . , L}. Specifically
in the 2D case, the boundary integral is estimated using stan-
dard quadrature methods [19], similarly the surface integral
may be estimated using the methods described by Georg in
[20, 21]. Taking the surface integral into account, in contrast
to Auffray et al who assume it decays to zero [11], allows
us to operate on measurements taken over short time win-
dows. In so doing, we are able to retrieve the source locations
with better accuracy. Moreover, most approaches assume a
physical boundary, accompanied by boundary conditions. In
our case the domain boundary is artificial and defined by the
sensor locations.

Remark 1. We obtain a similar result to Equation (8) when
the source is transient. Indeed a similar analysis to that above
using Equation (4) yields:

R(k) =

M∑
m=1

c′me
−k(ξ1,m+jξ2,m), (9)

where c′m = cm
αm

(
eαm(T−tm) − 1

)
.

3.2. Single Source Activation Time Retrieval

Assuming a single instantaneous source field (M = 1) where
the concentration (c) and location (ξ) of the source have
already been estimated using Equation (8), we propose a
simple iterative “linear search” solution to find the activation
time parameter (τ) of the source as follows: first consider
the sequence of field measurements {ϕn(tl) : l = 0, . . . , L}
made by the n-th sensor (- situated at xn). Moreover, let us
make an initial “guess” τ0 at the activation time of the single
source field, hence for this τ0 the reconstructed field at xn is

û(xn, t− τ0) = c
4πµ(t−τ0)e

− ‖xn−ξ‖2
4µ(t−τ0) H(t− τ0) and its sam-

pled version {ϕ̂n(tl, τ0) = û(xn, tl − τ0) : l = 0, . . . , L}.
Compare the measured and reconstructed sequences (in vec-
tor form) for several values of τ0 and choose the τ0 that

generates a reconstructed sequence most similar to the mea-
sured one. We achieve this by maximizing the normalized
inner product between both sequences – a modification of the
Cauchy-Schwarz inequality for vectors.

3.3. Single Source Estimation Algorithm

In Algorithm 1 we formally present the two-step algorithm for
estimating the parameters of a single diffusion source from
samples of its induced field. In the first step the RGF method
is used to estimate the source’s intensity and location; in the
second step a selection of the nearest sensors are each inde-
pendently used to estimate the activation time and their aver-
age taken to be an improved estimate of the activation time.

Algorithm 1 Single Diffusion Source Estimation
Require: Field samples ϕn(tl), sensor locations xn, sam-

pling interval ∆T
1: Initialize K ≥ 1 and set window length T = α∆T

(where α ∈ Z, α >> 1).
2: Estimate sequence {R(k) : k = 0, . . . ,K} for t ∈ [0, T ].
3: Annihilate the sequence {R(k) : k = 0, 1, . . . ,K} to

find concentration-location pair (σ, ξm). For multiple
pairs (σi, ξi), select the pair with largest σi.

4: Select the β ∈ Z nearest sensors to ξ.
5: For each of these β sensors, we retrieve the τ̂1, . . . , τ̂β

that give a reconstructed sequence most similar to mea-
sured sequence as described in Section 3.2.

6: Then c← σ, τ ←average{τ̂1, τ̂2, . . . , τ̂β}.
7: Return concentration c, location ξm and activation time
τ .

4. MULTIPLE SOURCE ESTIMATION ALGORITHM

Algorithm 1 provides a systematic way of estimating a single
point and instantaneous source from “boundary” and “inte-
rior” samples of its field. In fact it is easily generalized to
the multiple source case provided the sources are well sepa-
rated in time – specifically, the sampling interval is assumed
to be small enough to resolve the activation of two consecu-
tive sources. The modification is as follows:

1. Using Equation (8) search for two sources (choose
K ≥ 3) over some time window of length T = α∆T
that is much smaller than the duration (Tend) over
which the entire field is sampled (so T << Tend).

2. If one only source is found (either σ2 ≈ 0 or ξ2 /∈
Ω) then run steps 4 onwards of Algorithm 1, otherwise
decrement (say α = α−1) the time window (and repeat
steps 1 and 2 above) until only one source is found.

3. Now reconstruct the field due to the current source at all
sensor locations, for the duration of the samples taken.
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Fig. 2. Source Estimation from circular (radius = 0.15m) boundary and uniform (spacing = 0.04m) interior measurements. The
scatter-plots show sensor locations (green ‘◦’), true source locations (blue ‘+’) and estimated locations (red ‘×’).

4. Remove its contribution from the original measure-
ments to get the “adjusted” measurement and repeat
with a larger time window. We stop when the adjusted
measurement is below a predetermined threshold.

This algorithm is evaluated in Section 5 using synthetic field
measurements.

5. SIMULATION RESULTS

In this section we provide simulation results showing the per-
formance of our multi-source estimation algorithm. We sim-
ulate the 2-D field governed by the diffusion equation, in
particular we consider the setting where the field is induced
by four sources activated at different times. Samples of the
field are then collected, at 1Hz for 25seconds, by sensors ar-
ranged along a circular boundary (∂Ω) and uniformly inside
the bounded region (Ω). The simulation parameters are sum-
marized below:

• M = 4. Intensities cm = 1 for m = 1, . . . , 4. Loca-
tions ξ1 = (0.113, 0.221), ξ2 = (0.234, 0.175), ξ3 =
(0.121, 0.075), ξ4 = (0.092, 0.113). For activation
times see legend in Figure 2a.

• Field sampled over Tend = 25seconds at sampling fre-
quency 1/∆T = 1Hz.

• K = 3, i.e. k = 0, 1, . . . , 3 for the test function family
Ψk(x) = e−k(x1+jx2).

• 43 Interior Sensors and 20 Boundary sensors.

Figure 2 demonstrates the ability of the proposed algorithm
to successfully estimate the location and activation times
of the active sources. In addition, we retrieve the follow-
ing estimates, ĉ1 = 0.9758, ĉ2 = 1.0207, ĉ3 = 0.9833 and
ĉ4 = 0.9509, for the source intensities given ideal mea-
surements. For the noisy measurements (SNR=15dB), the
concentration estimates vary marginally around these esti-
mates for each source (with occasional spikes in the range
0.8 − 1.2). We have also observed that the estimation ac-
curacy is dependent on the number of interior sensors to a
higher degree, more interior sensors increases the estimation
accuracy and also reduces the spread of the estimates in the
noisy setting. The boundary sensors however have little effect
on the estimation accuracy.

6. CONCLUSION

In this paper an algorithm for solving the diffusion source es-
timation problem in 2-D using boundary and interior mea-
surements of the induced field is presented. In particular we
solve the estimation problem when the sources are spatially-
localized and instantaneous. Simulations demonstrate that
the estimation algorithm is noise robust even in the multiple
source setting, thanks to the averaging effects from the time
integrated field, as well as the averaging of the multiple acti-
vation time estimates from the nearest sensors to the source.
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