
SPARSE ADAPTIVE POSSIBILISTIC CLUSTERING

Spyridoula D. Xenaki†, Konstantinos D. Koutroumbas†, Athanasios A. Rontogiannis†

†IAASARS, National Observatory of Athens, GR-152 36, Penteli, Greece
{ixenaki,koutroum,tronto}@noa.gr

ABSTRACT
In this paper a new sparse adaptive possibilistic clustering algorithm
is presented. The algorithm exhibits high immunity to outliers and
provides improved estimates of the cluster representatives by adjust-
ing dynamically certain critical parameters. In addition, the pro-
posed scheme manages - in principle - to estimate the actual number
of clusters and by properly imposing sparsity, it becomes capable to
deal well with closely located clusters of different densities. Exten-
sive experimental results verify the previous statements.

Index Terms— possibilistic clustering, adaptivity, sparsity

1. INTRODUCTION

Clustering a set of objects into groups has been a well established
data analysis method in unsupervised pattern recognition and it has
been frequently used in a vast range of applications during the last
decades (e.g. [1]). Most of the work in this field has been focused
on compact and hyperellipsoidally shaped clusters. Among the var-
ious clustering methods that have attracted considerable attention in
recent years are the cost function optimization ones, where a set of
cluster representatives is iteratively adjusted in order to be moved
to regions where the clusters live. Distinguished members of this
family of methods are the crisp (e.g. [1]), the fuzzy [2] and the pos-
sibilistic clustering methods [3]. The celebrated k-means algorithm
(e.g. [4]) is the most well-known representative of crisp algorithms,
while the fuzzy c-means (FCM) algorithm is the most commonly
used fuzzy clustering algorithm. However, they both require knowl-
edge of the true number of clusters and are vulnerable to noisy data
and outliers [1], [5]. On the other hand, the possibilistic c-means
(PCM) algorithms are more robust to noise and outliers and even if
the number of representatives is overestimated, they tend to move all
representatives to “dense in data regions” in the data space. How-
ever, more than one representative may be moved to the same dense
region [6], [7]. Some PCM variants that try to address the problems
of the conventional PCM have been reported in [8],[9],[7]. Also in
[10], [11] two variations of possibilistic clustering that impose spar-
sity constraints, adopting the l1 norm, are proposed. In [11] the clus-
ters are recovered in a sequential manner, in contrast to [10] (and all
previous algorithms), where clusters are recovered simultaneously.
Other such methods are given in [12], [13].

In the present paper, we deal with the PCM algorithm, which is
extended and improved along two directions. Firstly, the number of
clusters and the η parameters that it involves (see below) are not kept
fixed (as in conventional PCM) but, rather, they are adapted as the
algorithm evolves, leading to the so-called Adaptive PCM algorithm
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(APCM) ([14]). Note that by setting the (initial) number of clusters
to a value greater - but not much greater - than the true number of the
actual clusters, APCM (potentially) reduces this number to the num-
ber of natural clusters, by driving the cluster representatives towards
dense regions. Secondly, a suitable sparsity constraint is imposed
on the degrees of compatibility of each data vector with the clusters,
giving rise to the Sparse APCM (SAPCM) algorithm. SAPCM ex-
hibits increased immunity to data points that may be considered as
noise or outliers by not allowing them (in principle) to contribute to
the estimation of the cluster representatives. A consequence of this
fact is that SAPCM estimates better the “centers” of the “dense re-
gions”. Moreover, SAPCM has, in principle, the ability to recover
low-density clusters, located close to higher density clusters.

The rest of the paper is organized as follows. In Section 2, the
new SAPCM clustering algorithm is presented. In Section 3, the
performance of SAPCM is tested against various known clustering
methods, using extensive computer simulations. Finally, concluding
remarks are provided in Section 4.

2. THE SPARSE ADAPTIVE PCM (SAPCM)

Let X = {xi ∈ <`, i = 1, ..., N} be a set of N , l-dimensional data
vectors. Let also Θ = {θj ∈ <`, j = 1, ...,m} be a set ofm vectors
that will be used for the representation of the clusters formed in X .
In what follows, || · || denotes the Euclidean norm. Let U = [uij ] be
anN×mmatrix whose (i, j) element stands for the so called degree
of compatibility of xi to the jth cluster, denoted by Cj , and repre-
sented by the vector θj . Let also ui

T = [ui1, ..., uim] be the vector
containing the elements of the ith row of U . In contrast to the origi-
nal PCM, where uij’s should satisfy the conditions, (a) uij ∈ [0, 1],

(b) maxj=1,...,m uij > 0 and (c) 0 <
N∑
i=1

uij < N ([3]), here,

only the first one (a) is considered. Based on the minimization of a
classical PCM cost function (see below and [15]), the uij’s and the
representatives θj’s are (respectively) computed as

uij = exp

(
−‖xi − θj‖

2

ηj

)
(1) θj =

∑N
i=1 uijxi∑N
i=1 uij

(2)

Loosely speaking, the ηj parameter is a measure of how much the
influence of Cj is spread around θj , i.e., a measure of its variance.

2.1. Initialization and adaptivity issues

Initialization: In the proposed clustering scheme, the initialization
of θj’s is carried out using a fast approximate variation of the Max-
Min algorithm proposed in [16] (see also [14]), in order to increase
the probability of each θj to be placed initially nearby a “dense in
data” region. Denoting by Xre the set of the initial cluster represen-
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tatives, we propose the following initialization of ηj’s. First, the dis-
tance of each θj ∈ Xre from its closest θs ∈ Xre − {θj}, denoted
by dmin(θj), is determined and then ηj is set to ηj =

dmin(θj)/2

− log β
,

where β ∈ (0, 1) is an appropriately chosen parameter (see Initial-
ization of ηj’s part in Alg. 1). As it has been verified experimen-
tally, typical values for β that lead to good initializations are in the
range [0.1, 0.5]. The experiments showed also that β depends on
how densely the natural clusters are located; smaller values of β are
more appropriate for sparsely located clusters, while larger values of
β are more appropriate for more densely located clusters.

Adaptation: In the proposed clustering algorithm, this part refers
to, (a) the adjustment of the number of clusters and (b) the adapta-
tion of ηj’s, which are two interrelated processes. Let label be a
N -dimensional vector, whose ith component contains the index of
the cluster which is most compatible with xi, that is the cluster Cj
for which uij = maxr=1,...,m uir . Let also nj denote the number of
the data points xi, that are most compatible with the jth cluster and
µj be the mean vector of these data points. The adjustment (reduc-
tion) of the number of clusters is achieved by examining if the index
j of a cluster Cj appears in the vector label. If this is the case, Cj
is preserved. Otherwise, Cj is eliminated (see Possible cluster elim-
ination part in Alg. 1). Moreover, the ηj parameter of a cluster Cj is
estimated as a measure of its variance, i.e., as the mean value of the
distances of the most compatible to Cj data vectors from their mean
vector µj and not from the representative θj , as in previous works
(e.g. [3], [7]) (see Adaptation of ηj’s part in Alg. 1). It is also noted
that, in the case where two or more clusters are equally compatible
with a specific xi, then xi will contribute to the determination of the
η parameter of only one of them, which is chosen arbitrarily.

2.2. Sparsity issue

Sparsity is imposed on the vectors ui via penalization of the PCM
cost function with the lp norm with 0 < p < 1, i.e.,

J(Θ, U) = JPCM (Θ, U) + λ

N∑
i=1

m∑
j=1

upij (3)

where the conventional PCM cost function (e.g. [3]) is given by

JPCM (Θ, U) =
N∑
i=1

[
m∑
j=1

uij‖xi−θj‖2 +
m∑
j=1

ηj(uij lnuij−uij)]

(4)
and λ is a user-defined penalizing factor that controls sparsity. The
SAPCM is derived via the minimization of J(Θ, U). Clearly the
updating equation of θj’s will be the same as in eq. 2. It is only the
updating of uij’s that will be modified, in the light of J(Θ, U).

Taking the derivative of J with respect to uij we get

∂J(Θ, U)

∂uij
≡ ηjf(uij) = ηj

(
dij
ηj

+ lnuij +
λ

ηj
pup−1

ij

)
(5)

where dij = ‖xi − θj‖2. Obviously, ∂J(Θ,U)
∂uij

becomes zero if
and only if f(uij) becomes zero. Clearly, at a first glance, solving
f(uij) = 0 is not a trivial task. However, it can be shown (the proof
is omitted due to space limitations) that the roots of f(uij) - if they
exist - are at most two and lie definitely in [0, 1]. Based on this, we
first determine the minimum ûij of f(uij), which is proved to be

ûij =

(
λ

ηj
p(1− p)

) 1
1−p

(6)

Algorithm 1 The SAPCM algorithm

Initialize: t = 0, θj ≡ θj(0) %from Max-Min Algorithm [16]
%Initialization of ηj’s
for j = 1 to m

Determine: dmin(θj) = minθs∈Xre−{θj} ‖θj − θs‖
2

Set: ηj =
dmin(θj)/2

− log β

end for
Repeat:

%Update U
Update: U (as described in Section 2.2)
t = t+ 1
%Update Θ

for j = 1 to m

θj(t) =
N∑
i=1

uij(t− 1)xi

/
N∑
i=1

uij(t− 1)

end for
%Possible cluster elimination

for i = 1 to N
Determine: uir = maxj=1,...,m uij
If uir 6= 0

Set: label(i) = r
else

Set: label(i) = 0
end if

end for
for j = 1 to m

If j /∈ label
Remove Cj
m = m− 1

end if
end for

%Adaptation of ηj’s

for j = 1 to m
ηj(t) = 1

nj(t)

∑
xi:uij(t)=maxr=1,...,m uir(t) ‖xi − µj(t)‖

end for
Until: a termination criterion is met

Then, we check whether f(ûij) > 0. If this is the case, then f(uij)
has no roots in [0, 1] and we set uij = 0, thus imposing sparsity.
Otherwise, f(uij) = 0 has two solutions in [0, 1]1. Using a simple
algebraic analysis, it turns out that the largest of these solutions is
the one that minimizes J(Θ, U). To determine the largest of the
solution(s) of f(uij) = 0, we apply the bisection method (e.g. [17])
in the range [ûij , 1], which is known to converge very rapidly to the
optimum uij . Other methods can also be used, e.g. [18].

Also, it turns out that a necessary condition for λ in order the
equation f(uij) = 0 to have a solution (i.e., f(ûij) < 0) is 0 <
λ < min

j=1,...,m

ηj
ep(1−p) , where e is the base of natural logarithms.

3. EXPERIMENTAL RESULTS

In this section, we test the proposed method in several experimen-
tal frameworks and illustrate the results (due to space limitations we

1Or one in the extreme case where f(ûij) = 0.

3097



0 2 4 6 8
−1

0

1

2

3

4

5

6

7

 

 
Cluster 1
Cluster 2
Cluster 3

(a) k-means/FCM with m = 3
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(b) k-means with m = 5
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(c) FCM with m = 5
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(d) PCM with m = 8
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(e) APCM with m = 5
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(f) SAPCM with m = 5

Fig. 1. Clustering results for Experiment 1. Note that in PCM the clustering result is extracted taking into account only the truly “different”
clusters. Bolded dots represent the final clusters’ representatives.

report here results from artificially generated experiments that high-
light the special attributes of the proposed SAPCM). Moreover, we
compare the results with those obtained from the k-means, the FCM,
the PCM, the APCM and the algorithm proposed in [11]. The latter
imposes sparsity on ui’s in a different way from that in SAPCM and
uses the l1 norm. In addition, in order to be fair, the representatives
(θj) are initialized based on the Max-Min scheme and the parame-
ters are fine tuned, in all algorithms. In all experiments, p is set equal
to 0.5 for SAPCM algorithm.

Experiment 1: Let us consider a two-dimensional data set con-
sisting of N = 1500 points, where three clusters C1, C2, C3 are
formed. Each cluster is modelled by a normal distribution. The
means of the distributions are c1 = [3.5, 5.7]T , c2 = [2.8, 0.8]T

and c3 = [4.1, 3.7]T , respectively, while their (common) covariance
matrix is set to 0.4 ·I2, where I2 is the 2×2 identity matrix. A num-
ber of 500 points are generated by each one of the distributions. Note
that C1 and C3 clusters are close enough to each other, while they
are far away fromC2. In all algorithms, after their convergence, each
data point xi is assigned to a cluster Cj , if uij = maxr=1,...,m uir .
In particular in the SAPCM algorithm, for a data point xi that has
not been assigned to any cluster (i.e. uij = 0,∀j ), we estimate uij’s

as uij = exp(− ‖xi−θj(t)‖2

ηj
) for each cluster and then we assign xi

to a cluster as before. In order to compare a clustering with the true
data label information, we use the Rand Measure described e.g. in
[1].

Table 1 shows the results of all the previously mentioned algo-
rithms, where minitial and mfinal denote the initial and the final
number of clusters, respectively. Fig. 1 (a) shows the clustering re-

sult obtained using the k-means and the FCM algorithm withm = 3.
Figs. 1 (b), (c) present the clustering results obtained using the k-
means and the FCM algorithm with m = 5, respectively. Fig. 1
(d) depicts the performance of PCM for m = 8, while in addition,
it shows the circled regions, centered at each representative θj and
having radius equal to ηj , in which cluster Cj has increased influ-
ence. Finally, Figs. 1 (e), (f) show the results of APCM (withm = 5
and β = 0.1) and SAPCM (with m = 5, β = 0.1 and λ = 0.05),
respectively.

Table 1. The results of the data set: Experiment 1
minitial mfinal Rand Measure

k-means 3 3 94.71%
k-means 5 5 85.68%
FCM 3 3 94.63%
FCM 5 5 83.76%
PCM 3 to 5 1 33.29%
PCM 8 2 76.35%
Alg. of [11] - 4 77.24%
APCM [14] 5 to 10 3 94.55%
SAPCM 5 to 10 3 94.59%

As it can be deduced from Fig. 1 and Table 1, when the k-means
and the FCM are initialized by the (unknown in most cases) true
number of clusters (m = 3), their performance is very satisfactory.
However, any deviation from this value causes a significant degrada-
tion to the obtained clustering quality. On the other hand, the classi-
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cal PCM fails to unravel the underying clustering structure, mainly
due to the fact that two clusters are close enough to each other and
the algorithm does not have the ability to adapt ηj’s in order to dis-
tinguish them. Finally, both the APCM and the proposed SAPCM
constantly produce very accurate results for various initial values of
m, while the algorithm of [11] (with λ = 10 and q = 2) yields
inferior performance compared to the previous ones.

We focus next exclusively on APCM and SAPCM.
Experiment 2: Let us consider the same two-dimensional data

set as in Experiment 1, in which 200 data points are added randomly
as noise in the region where data live (Fig. 2).
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(a) APCM with m = 5 and β = 0.1
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(b) SAPCM with m = 5, λ = 0.1 and β = 0.1

Fig. 2. Clustering results for Experiment 2.

Table 2. Mean Euclidean distance between θj’s and cj’s
minitial mfinal Mean distance

APCM [14] 5 (10) 3 0.2262 (0.2263)
SAPCM 5 (10) 3 0.1467 (0.1469)

As it is shown in Fig. 2, when outliers or noisy data points are
ignored by the clustering process (the SAPCM case), dense regions
are detected more accurately and the representatives are placed very
close to their exact centers. Table 2 shows the mean of the Euclidean
distances between each representative (θj) and its closest mean (cj)

for each one of the two algorithms. It can be seen that SAPCM esti-
mates more accurately the centers of the clusters, as the outliers do
not participate in the estimation of the representatives. In addition,
in Fig. 2 it is shown how the outliers affect the estimation of ηj’s.
Obviously, in the APCM case, where each data point contributes to
the estimation of one ηj parameter, ηj’s increase, due to the long
distance between the outliers and the means of the clusters. Thus the
circled regions in which clusters Cj have increased influence, grow
significantly and may affect neighboring clusters. This may lead
APCM to fail in distinguishing between two closely located clusters
(see next example). On the other hand, SAPCM imposes sparsity
to a sufficient degree so that the remotely located from the mean of
the cluster points are not taken into account, thus leading to smaller
values for ηj’s. This is an explanation of why the circled regions that
correspond to clusters C1 and C3 do not overlap in Fig. 2(b).

Experiment 3: Let us consider again the set-up of Experiment
1, where now 300 points are generated by each one of the first two
distributions and 500 points are generated by the third one. Note that
clustersC1 andC3 have a great difference in their density (since both
share the same covariance matrix but C1 has significantly less points
thanC3) and since they are closely located to each other, a clustering
algorithm could consider them as a single cluster.

In this data set, the APCM algorithm fails to unravel the under-
lying clustering structure and unites clusters C1 and C3 thus leading
to a two-cluster clustering result for several values of β. In order to
get some further insight on how APCM attains such an outcome, let
us consider the updating equation of θj’s. For the low-density clus-
ter C1, the data points of C3 will give (probably) small but “more”
contributions to the estimation of θ1 than the rest most compatible
with C1 data points, due to the plurality of the former in the bor-
dered area between the two clusters. Thus, the representative θ1

will gradually be driven towards the denser region gaining more and
more data points from the bordered area. This results in greater val-
ues for η1 and finally leads to the unification of the clusters after
some iterations. On the other hand, for a large enough value of λ
(λ = 0.3), SAPCM heavily imposes sparsity so that the remotely
located from the mean of the C1 cluster points are not taken into
account to the estimation of the parameters of cluster C1, thus lead-
ing to smaller values for η1. As a consequence, the unification of
C1 with its neighboring (denser) C3 cluster is prevented (a relevant
figure is omitted due to space limitation).

4. CONCLUSIONS

In this paper a novel sparse adaptive possibilistic clustering algo-
rithm (SAPCM) has been proposed. The algorithm (a) encompasses
a proper initialization and a new updating mechanism for the η pa-
rameters and (b) is immune to overestimates of the actual number of
existing clusters. Moreover, SAPCM imposes a sparsity constraint
on the degrees of compatibility of each data vector with the clusters.
These modifications and additions to the original PCM make the new
algorithm very flexible in unraveling the underying clustering struc-
ture via: (a) the improvement on the estimation of the cluster rep-
resentatives, through the adaptation of ηj’s and the exclusion of the
outliers from contributing to this estimation and (b) its capability of
detecting (in principle) the number of natural clusters. In extensive
experiments, it is shown that SAPCM has a steadily superior per-
formance, compared to k-means, FCM and the conventional PCM,
irrespective of the initial estimate of the number of clusters. Also,
in principle, it has the ability to recover closely located clusters of
different densities.
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