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ABSTRACT

Using Shannon theory, we derive fundamental, asymptotic
limits on the classification of low-dimensional subspaces
from compressive measurements. We identify a syntactic
equivalence between the classification of subspaces and the
communication of codewords over non-coherent, multiple-
antenna channels, from which we derive sharp bounds on
the number of classes that can be discriminated with low
misclassification probability as a function of the signal di-
mensionality and the signal-to-noise ratio. While the bounds
are asymptotic in the limit of high dimension, they provide
intuition for classifier design at finite dimension. We validate
this intuition via an application to face recognition.

1. INTRODUCTION

Compressive sensing offers the means to simultaneously
sense and compress a high-dimensional signal that belongs
to a low-dimensional manifold. The paradigmatic result
of compressed sensing is that one can recover, with over-
whelming probability, a signal that is k-sparse in some basis
of Rn with only O(k log(n/k)) linear projections and us-
ing low-complexity recovery algorithms [1, 2]. As such,
compressive sensing has been proposed for myriad applica-
tions across signal processing. In addition to the recovery
of low-dimensional signals, it is natural to consider other
information-processing tasks in the compressive domain.
Here we consider classification in the compressive domain.
Rather than a signal-estimation problem, ours is a hypothesis-
testing problem: How well can a classifier discern the signal
class from a limited number of compressive measurements?

In this paper we study compressive subspace classifica-
tion. The signal of interest belongs to a k-dimensional sub-
space of Rn, and the classifier intends to identify the subspace
from m linear projections. This problem is related to, but dis-
tinct from, sparse support recovery. The support recovery task
is to identify the k-dimensional canonical subspace (or some
rotation thereof) to which the signal of interest belongs; the
number of such subspaces is dictated by combinatorics. By
contrast, in our problem the subspaces are arbitrary; thus a
classification task may involve any number of classes.

We derive fundamental limits on compressive subspace
classification. Given k, m, n, and the received signal-to-noise
ratio (SNR), we characterize the number of classes that can be
discriminated with high probability via information-theoretic
machinery. As the several signal dimensions approach in-
finity, we bound the logarithm of the number of discernible
classes via the mutual information between the class subspace
and the compressive measurements. Somewhat surprisingly, a
duality between subspace classification and communications
over non-coherent multiple-antenna channels [3] allows us to
exploit well-known results from the communications litera-
ture in proving our claim.

Owing to space considerations, we merely state our theo-
retical results and devote the rest of the paper to their empir-
ical validation. The results as provide rules of thumb for the
design of practical classifiers, prescribing the number of mea-
surements required to distinguish a desired number of classes.
To test this interpretation, we study face recognition, which
can be cast as a subspace identification problem [4, 5], in the
compressive domain. We find that our results provide rather
accurate predictions regarding the number of measurements
required to discriminate faces with high probability.

2. PROBLEM STATEMENT

2.1. Signal Model

We suppose a linear, noisy signal model. The classifier ob-
tains the signal of interest, passed through a sensing matrix
and corrupted by additive Gaussian noise:

y = Φx + z, (1)

where Φ ∈ Rm×n is a fixed sensing matrix, x ∈ Rn is
the signal of interest, and z ∈ Rm is white Gaussian noise
with covariance matrix 1/SNR · Im×m. We suppose m ≤ n
throughout. We call n the ambient signal dimension and m
the number of measurements. To ensure that the SNR remains
meaningful, we impose energy constraints on both the signal
of interest and the sensing matrix:

‖Φ‖22 ≤ 1, E[‖x‖2] ≤ m,

where ‖·‖2 is the `2 operator norm.
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We further suppose that x belongs to a k-dimensional sub-
space of Rn. We define a classification problem as a collec-
tion of L subspaces, which we denote by an L-tuple of or-
thonormal matrices

P = {U1, · · · ,UL}, (2)

where each Ul ∈ Rn×k represents one of the subspaces to be
discriminated. We suppose that the classifier knows P per-
fectly. Its task is to choose the correct Ul from the compres-
sive measurements y. In order to derive information-theoretic
bounds, we further suppose that x follows a zero-mean Gaus-
sian distribution with covariance UlU

T
l . Equivalently, the

signal of interest can be written as

x = Ulh, (3)

where h ∈ Rk is distributed according to N (0, Ik×k). Then,
the received signal can be written

y = ΦUlh + z. (4)

2.2. Classification Capacity

A classifier is a mapping C : Rm → {1, . . . , L} that takes as
input the measurement y and returns as output an estimate l̂
of the class associated with x. Let the classes have uniform
prior probability, and let the probability of misclassification
be denoted Pe = Pr(l̂ 6= l). When the dimensions n, m,
and k, and the number of classes L go to infinity, we can
characterize via Shannon theory the regimes in which Pe →
0. In particular, we prove limits on how fast the number of
classes L can grow with probability of error going to zero.

Consider a sequence of classification problems Pm, in-
dexed by the number of measurementsm. Each Pm may have
a different value for n,m, k, and L. By analogy with commu-
nications problems, we can define the “rate” of the sequence,
or the log-cardinality normalized by m:

ρ = lim
m→∞

log(L)

m
.

Furthermore, let n and k scale linearly with m, or

lim
m→∞

n

m
= ν, lim

m→∞

k

m
= κ,

for ν ≥ 1 and κ < 1. With this parameterization, we can
describe the error performance in the limit of large dimen-
sion, expressed in terms of ρ, ν, κ, and the SNR. We say that
a normalized log-cardinality ρ is achievable if there exists a
sequence Pm such that Pe → 0 as m → ∞. We call the
supremum over achievable log-cardinalities ρ the classifica-
tion capacity, and we denote it by C(ν, κ,SNR).

By Fano’s inequality, we can upper bound the classifica-
tion capacity by limm→∞ I(U; y)/m, the normalized mutual
information between the subspaces and the measurement y.

As long as ρ is greater than this quantity, the probability of
error is bounded away from zero. While on its face it appears
difficult to compute this mutual information, we identify a
duality with non-coherent multiple-antenna communications
channels that permits a relatively straightforward computa-
tion.

3. CAPACITY BOUNDS

Here we present bounds on the classification capacity. We
omit the proofs, instead providing the intuition behind our
analysis, which is rooted in a duality between the classifi-
cation of Gaussian signals and communications over MIMO
channels, which we describe in a previous work [6]. To il-
lustrate this duality, we first briefly review the non-coherent
MIMO channel as studied in [3]. It consists of a transmitter
having N antennas, a receiver having T antennas, and an un-
known, i.i.d. complex Gaussian channel matrix H ∈ CT×N

unknown to transmitter and receiver and persisting for M
symbol times. The signal model is

Y = HX + Z, (5)

where Y and Z are T ×M matrices, and X is N ×M . The
noise signal Z is, as before, i.i.d. AWGN. The transmit signal
X is subject to the usual energy constraint.

Equation (5) is similar to (4). In fact, taking the trans-
pose of (4), we see that the signal model for classification
is nearly identical to that of communications over the non-
coherent MIMO channel:

yT = hTUT
l ΦT + zT . (6)

The preceding equation nearly models a non-coherent MIMO
channel having k transmit antennas, one receive antenna, and
a coherence time of m. The matrix Ul, which the classifier
intends to recover, takes the place of the codeword. Just as the
codeword in the non-coherent MIMO channel passes through
an unknown channel matrix H, the matrix Ul is transformed
by the unknown driving process h. Thus there is an equiv-
alence between identifying the class subspace driven by an
unknown Gaussian process and recovering a codeword trans-
formed by an unknown Gaussian channel matrix. Important
differences remain—for example, the classification signal
model is real-valued, whereas the MIMO channel is complex,
and the measurement matrix Φ has no direct analogue in the
MIMO channel—but we can leverage much of the theoretical
machinery to prove bounds on the classification capacity.

In [3] it is observed that the near-optimal distribution of
codewords is an isotropic packing of subspaces across the
Grassmann manifold. That is, the distribution that approx-
imately maximizes the mutual information is uniform over
the manifold of low-dimensional subspaces. The receiver dis-
cerns codewords by detecting the subspace to which the re-
ceived signal belongs. Similarly, the optimum distribution of
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the matrices Ul is uniform over the Grassmann manifold of
k-dimensional subspaces of Rn. Using this optimal distribu-
tion, one can show that the mutual information between the
subspaces and the received signal is

I(U; y) =
m− k

2
log(SNR) +O(m). (7)

From this fact, we can state the main result of this paper

Theorem 1 The classification capacity is

C(ν, κ,SNR) =
1− κ

2
log(SNR) +O(1). (8)

The converse part is a consequence of Fano’s inequality and
the above computation of I(U; y). Achievability is proven
by direct analysis of the misclassification probability over an
ensemble of randomly-constructed subspaces. The proof will
be presented in full in a later work.

The upshot of Theorem 1 is that if the number of classes
grows faster than SNR(m−k)/2, the misclassification error is
bounded away from zero, and if the number of classes grows
slower, there exists a sequence of classification problems for
which the misclassification error goes to zero. Naturally, for
finite dimension there is not a hard threshold dividing suc-
cess from failure. Nevertheless, these results provide design
intuition whose effectiveness we study in the next section.
Much as a communications engineer should take care to sig-
nal at rates below capacity, a system designer should take suf-
ficiently many measurements that the classification capacity
is not exceeded. Fortunately, the capacity result suggests that
the number of discernible classes grows exponentially in m.
For a fixed target cardinality, one usually does not need to take
too many more measurements in order to increase sufficiently
the classification capacity.

4. FACE RECOGNITION

Here we explore the correspondence between the theoretical
results derived in the previous section and face recognition.
While faces have been studied extensively, an interesting—
and fruitful for our purposes—line of research transforms the
face recognition task into a subspace classification one. It
considers images of faces in which the orientation relative to
the camera remains fixed, but the illumination varies. Sup-
posing the faces themselves to be approximately convex and
to reflect light according to Lambert’s law, it was shown via
spherical harmonics that the set of images of an individual
face is well approximated by a nine-dimensional subspace
[4]. Thus, discriminating between the 9D subspaces is suf-
ficient to classify faces.

Given this linear characterization, we examine how well
one can classify using compressive measurements, and
whether the theory described in the previous section can
inform system design. For our study, we use 38 cropped faces

from the Extended Yale Face Database B, described in [5, 7].
For each face, the database contains a few dozen greyscale
photographs, each having 32,256 pixels, taken under a variety
of illumination conditions as shown in Figure 1. We vectorize
these images, pass them through a measurement matrix Φ,
and classify them as described below.

Fig. 1. Two sample images from the Extended Yale Face
Database B. These images are of the same face, but are taken
under different illumination conditions.

4.1. Compressive 9PL

We classify the faces according to a compressive variation on
the nine points of light (9PL) algorithm presented in [5]. The
9PL algorithm is a low-complexity, low-training classifier in-
spired by the theoretical results of [4]. It involves both train-
ing and subspace classification. For training, nine images of
each face are chosen to form a basis for the associated 9D sub-
space. These images are chosen to have near-optimum illumi-
nation patterns; the details are given in [5]. Consistent with
the previous sections, let Ul ∈ R32,256×9 be an orthonormal
representation of the basis for face l.

Then, we classify an image according to the minimum-
norm residual. We choose the rows of Φ as the M princi-
pal components of the training data. Then, for image x, the
classifier operates on the signal y = Φx, comparing the pro-
jection onto each subspace and choosing the class with the
smallest projection error:

l̂ = arg min
l
‖y −ΠΦUl

y‖ , (9)

where ΠA is the orthogonal projection onto the column space
of A.

In Figure 2 we plot the misclassification probability as
a function of m and for L ranging from 2 to 38. We ran-
domly choose L faces, compute the subspaces via 9PL, and
average the probability of misclassification error over 1000
random samplings from the classes. While we do not label
each curve, it is easy to see that the misclassification proba-
bility increases with L and decreases with m. However, even
for large m the error probability remains bounded away from
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zero. Noise, non-Lambertian reflectances, shadows due to the
non-convexity of real faces, misestimation of subspaces, etc.,
all result in a model mismatch, which produces an error floor.

Fig. 2. Misclassification probability as a function of m, for L
ranging from 1 to 38.

4.2. Agreement with Theory

Finally, we examine how well the rules of thumb derived in
the previous sections predict the performance seen here. In
order to do so, we need to translate the ostensibly noise-free
images into the noisy signal model of (1). Because there
is no additive noise explicit in the images, we compute the
SNR empirically according to the average projection error.
We project each compressed image onto the span of ΦUl and
take the projected squared norm as the signal power and the
squared residual norm as the noise power. Somewhat inter-
estingly, the SNR decreases in m. As we take more mea-
surements, we permit more non-idealities, and therefore more
noise, into the received signal. However, this phenomenon
impacts the results only slightly, since the number of classes
grows exponentially in m, but only polynomially in the SNR.

Using the computed SNRs, we estimate the number of
classes that Theorem 1 predicts can be discriminated reliably.
We simply compute max{1,min{SNR(m−9)/2, 38}}. Natu-
rally, this number grows quickly in m, and beyond m = 11
or m = 12, theory suggests that we ought to be able to dis-
criminate all 38 of the faces with low probability of error. In
Figure 3 we compare this prediction against the empirical per-
formance of our classifier. Using the results shown in Figure
2, we compute, for each m, the maximum L for which the
probability of error is less than 0.2.

The empirical performance is similar to theoretical pre-
diction. As m increases past 9, the number of classes rises
swiftly as predicted. After m = 50 or so, all 38 of the classes

Fig. 3. Number of discernible classes as a function of m.

can be discriminated, and it is not advantageous to take more
measurements. We do observe, however, that the transition
is not as sharp as Theorem 1 predicts. Whereas the theoret-
ical transition occurs over only 2-3 measurements, in prac-
tice the transition stretches out over 40 measurements. One
could postulate a few explanations for this discrepancy. For
example, the noise and the driving process are not Gaussian;
the classifier is suboptimal and therefore may not achieve the
classification capacity; and we are neglecting the O(1) term
in computing the number of discernible classes.

Instead, however, we conjecture that the discrepancy is
due primarily to the energy distribution over the 9D sub-
spaces. Like most natural images, the spectrum of the face
images follows a power-law distribution. Thus each addi-
tional measurement captures a smaller marginal signal en-
ergy. Our modeling assumptions, however, suppose that the
subspace is driven by a white process, so each additional
dimension ought to capture an equal marginal signal energy.
Therefore the improvement with m is somewhat smaller than
predicted. A fruitful area for future research is a theoretical
characterization of subspace classification when the modes
are not excited equally.

5. CONCLUSION

We have presented information-theoretic limits on the perfor-
mance of compressive classifiers over low-dimensional sub-
spaces. These limits provide design intuition for practical
compressive classification systems. This intuition is validated
via face recognition algorithms, where we observe reasonably
close correspondence between theory and practice. Future
work includes the analysis when subspaces are excited ac-
cording to a power-law distribution.
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