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ABSTRACT
We consider the problem where a large known library of L alterna-
tives is available and we wish to maximize the detection power in a
worst case scenario. The considered minimax detection approach re-
lies on a GLR test allied to a sparsity constraint. This approach con-
ditions the optimization of the target subspaces, in number r � L.
While the exact solution of the minimax optimization problem can
be found for r = 1, the problem for r > 1 is more intricate and we
propose two algorithms aimed at finding an approximate solution.
The proposed algorithms are illustrated on a face database and on
hyperspectral data and are shown to improve on the r = 1 case.

Index Terms— Minimax, detection, dictionary learning, spar-
sity, classification.

1. INTRODUCTION AND PRIOR WORKS

The minimax theory was introduced by Von Neumann [1] in game
theory with the objective of minimizing a loss function in a worst
case scenario. Minimax principles have led to numerous theoreti-
cal results and robust methods in various domains [2, 3] including
decision theory [4]. In signal processing, minimax risk arguments
paved in the 90’s the road of sparsity promoting methods based on
thresholding functions for denoising and inverse problems [5].

We consider here a minimax strategy for the following detection
problem. Under H1, one target signature si is activated, among a
(possibly very large) set of known alternatives forming a library S.
The signature’s amplitude and its index i are considered unknown.
This problem is instantiated in telecommunications, when detecting
an active symbol among a known dictionary of symbols [6], in med-
ical applications for the identification of pathological signatures [7]
or in hyperspectral astrophysical data [8].

In [8], we showed that the detection performance of a proce-
dure testing all alternatives may drastically drop for some alterna-
tives as the cardinality of S increases. For large libraries, a standard
approach is indeed to reduce the number of target subspaces by sub-
space learning (e.g. via sample mean, SVD, K-SVD, etc., [9]). An-
other important observation of [8] is that such standard approaches
tend to focus on an average behavior: consequently, some alterna-
tives may lie quite far from the learned target subspace(s) and the
associated detection power will be low.

In this framework, the minimax approach aims at minimizing
such effects. This objective can also be stated as maximizing the
minimum detection power, which is a maximin problem. In the rest
of the paper, we shall generically use the term “minimax” to refer to
this approach.

This work was supported by the CNRS program MASTODONS. R.F.R.
Suleiman is funded by Majlis Amanah Rakyat (MARA).

The minimax detection considered below relies on a GLRT
(Generalized Likelihood Ratio test) allied to a sparsity constraint.
This approach conditions the target subspace learning which can be
viewed as a dictionary learning problem. Sparsity-based dictionary
learning techniques are now widely used in the literature. They may
outperform generic dictionaries (e.g. wavelets) for image denois-
ing [10,11] and be very efficient for other tasks such as blind source
separation [12] or classification for object recognition [13, 14]. As
we will show, traditional learning algorithms do not perform well
with respect to (w.r.t.) minimax objectives, which lead to specific
optimization issues and call for dedicated learning algorithms.

In a first approach presented in [8], we considered the particular
case where the learned target subspace is restricted to one dimension
(i.e., the learned dictionary has a single atom). While this approach
was shown to improve the minimax power w.r.t. classical learning
algorithms such as K-Means [15] or K-SVD [10], such an extreme
reduction in dimension might be exaggerated w.r.t. the intrinsic di-
versity of the library. We thus expect that learning a few, instead
of one subspace may improve the minimax power. Besides, learn-
ing more atoms should provide a better average representation of the
alternatives, and thus might also increase the average performance.

The goal of this paper is to investigate how to derive algorithms
for subspace learning with minimax objectives and to evaluate their
performances. Sec.2 formalizes the considered detection problem
and the corresponding GLRT. The considered reduced dimension
model, associated GLR and optimization criterion are studied in
Sec.3. Because the optimized minimax dictionary cannot be ob-
tained by standard optimization techniques when more than one sub-
space are to be learned, we propose two algorithms (Sec.4) aimed at
finding an approximate solution. The first is an adaptation of the
K-SVD method where the dictionary update stage is replaced by the
exact solution of the 1-dimensional minimax problem. The second
uses the same dictionary update stage, but samples the distribution
in a greedy manner to open new classes. These algorithms are illus-
trated by numerical results on images and spectra in Sec.5.

2. EXACT DETECTION MODEL AND ASSOCIATED GLRT

The detection problem discussed in introduction can be written as{
H0 : x = n, n ∼ N (0, I)
H1 : x = Sα + n, ||α||0 = 1

(1)

where x and n ∈ RN . The known alternatives are here collected
as columns of the library S ∈ RN×L = [s1, . . . , sL]. We assume
that the set si belong to the positive orthant (as for instance the test
data considered later on) and that they are normalized (‖si‖22 = 1,
i = 1, . . . , L). The 1-sparse constraint on the unknown vector
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α ∈ RL (only one non-zero element) indicates that under H1, only
one signal si of (unknown) amplitude αi is activated. This model as-
sumes that the covariance matrix (say, R) is known and equal under
both hypotheses, in which case “whitening” the data by R−

1
2 leads

to a model of the form (1). The GLR for (1) involves the constrained
Maximum Likelihood (ML) estimate of α:

TGLR(x,S) : max
α:||α||0=1

p(x|Sα)

p(x|0)

H1

≷
H0

γ′, (2)

with γ′ a threshold. Noting i∗ = arg max
i=1,...,L

|s>i x|, (where su-

perscript > denotes transposition), the non-zero component of the
constrained ML estimate of α is αML

i∗ = s>i∗x. Plugging this in (2)
yields the extreme value or Max test (see e.g. [16])

Tmax(x,S) = max
i=1,...,L

|s>i x|
H1

≷
H0

γ, (3)

where γ =
√

2 ln γ′ (γ can always be computed by Monte Carlo
simulations; this is necessary when S is not orthogonal).

While the GLR is a natural approach benefiting from optimality
properties in an asymptotic (w.r.t. to the amount of available data)
setting, the GLR may present in the considered framework two un-
desirable effects for high cardinality (L� N ) libraries S [8]. First,
the detection performance may happen to drastically drop for some
alternatives that are dissimilar to the others as L increases. The rea-
son is that a larger number of tested alternatives increases the rate
of false alarms in a relatively higher proportion than the detection
rate. Second, the computation complexity of test (3) scales as L,
which may be prohibitive for very large L [17]. These aspects sug-
gest to devise tests focusing on few target subspaces, which obvi-
ously improves the second effect. As for the first effect, reducing
the number of target subspaces by classical techniques (like MOD
or K-SVD) is not enough, because such optimized dictionaries rep-
resent well the core of the distribution of the alternatives si, but not
the marginal ones− which are critical for minimax detection perfor-
mance. Hence, the objective of maximizing the minimum detection
power should be explicitly accounted for in the learning procedure.

3. CONSTRAINED MODEL OF REDUCED DIMENSION

For problem (1), we investigate a GLR operating on the following
constrained model of reduced dimension r � L underH1:{

H0 : x = n, n ∼ N (0, I)
H1 : x = Dβ + n, ||β||0 = 1

, (4)

where β is unknown and contains only one non zero element, to
encourage the axes of D to align with the main “modes” (possibly
represented by isolated alternatives of S) of the distribution of the
set si over the unit sphere. The columns of D = [d1, . . . ,dr] are
normalized and otherwise unconstrained.

Similarly to (2)-(3), the GLR for (4) and for a given D leads to

TD(x) : max
j=1,...,r

|d>j x|
H1

≷
H0

ξ ⇔ max
j=1,...,r

(d>j x)2
H1

≷
H0

ξ2 (5)

where ξ is a threshold. The question is now to optimize D of size
N × r for test (5), so as to maximize the minimum probability of
detection PDet at a fixed probability of false alarm (PFA0 ) , that is,

max
D

min
i=1,...,L

P
(
maxj=1,...,r (d>j x)2> ξ2|H1, si

)
subject to P

(
maxj=1,...,r (d>j x)2> ξ2|H0

)
≤ PFA0 ,

‖dj‖2 = 1, j = {1, . . . , r}.
(6)

In the analysis below, all alternatives are considered of the same am-
plitude to be comparable in terms of SNR. We assume without loss
of generality unit amplitude and we denote by s` the target signal
underH1 of (1).

3.1. Case r = 1 : Exact solution to problem (6)

Consider first the case r = 1, which was treated in [8]. Here, d = D
and the GLR (5) becomes Td(x) : (d>x)2 ≷H1

H0
ξ2. Let c = d>x.

It can be proved that: c2|H0 ∼ χ2
1 and c2|H1, s` ∼ χ2

1,λ, which
denotes a noncentral chi-squared distribution with noncentrality pa-
rameter λ = s>` (dd>)s` = (d>s`)

2. Hence,

PFA = P (Td > ξ2 |H0) = 1− Φχ2
1
(ξ2),

PDet(s`,d)=P(Td>ξ
2|H1, s`)= 1−Φχ2

1,λ
(ξ2)=Q 1

2
(
√
λ, ξ),

where Φv denotes the cumulative distribution function of the random
variable v and Q 1

2
(
√
λ, ξ) is the generalized Marcum-Q function of

order 1/2. This function is monotonically increasing (for
√
λ > 0

and ξ ≥ 0) in its first argument
√
λ = |d>s`| [18]. The PFA is

indeed independent of s` and d in this case, so maximizing the min-
imum PDet underH1 at fixed PFA leads to the optimization problem

d∗=arg max
d:‖d‖2=1

min
i=1,...,L

(d>si)
2=arg max

d:‖d‖2=1
min

i=1,...,L
|d>si|, (7)

which can be solved by a standard QP solver [8].

3.2. Case r > 1 : Approximation of problem (6)

In this case, denote by c2j the variables c2j = (d>j x)2, j = 1, . . . , r,
with underH1: c2j ∼ χ2

1,λ=(d>j s`)
2 . The GLR (5) leads now to

PFA(D) = P( max
j=1,...,r

c2j > ξ2|H0,D),

PDet(s`,D) = P( max
j=1,...,r

c2j > ξ2|H1, s`,D).
(8)

It can however be checked that, underH1,
cov(c2j , c

2
k) = 4(d>j dk)(d>j s`)(d

>
k s`) + 2(d>j dk)2, (9)

so in contrast to the case r = 1, the PDet (and also the PFA: use s` =
0 in (9)) involves the distributions of the maximum of correlated
variables. Consequently, finding the exact solution to the minimax
problem (6) is much more difficult than for the case where r = 1.

To overcome this difficulty, we propose to use bounds for the
probabilities in (8). It can be shown that

PFA(D) ≤ 1− Φrχ2
1
(ξ2), (10)

PDet(si∗ ,D) ≥ Q 1
2

(
max

j=1,...,r
|d>j si∗ |, ξ

)
≥Q 1

2

(
ρ(r)(D), ξ

)
,

(11)

where si∗ = arg min
si

max
j=1,...,r

|d>j si| denotes (one of) the alternative

in S that is the most poorly represented by the dictionary D and

ρ(r)(D) = min
i=1,...,L

max
j=1,...,r

|dj>si| (12)

is the “minimax correlation” of D with S. These bounds indicate
that PFA(D) can be controlled by ξ. To maximize PDet(si∗ ,D), we
shall maximize the rightmost term in (11). We thus use ρ(r)(D) as a
proxy to the optimization problem (6). The learning algorithm (see
Sec.4.2) should produce a value ρ(r) that increases rapidly with r
(see Fig.5(a) for an example with r = 21 atoms). Note that if r = 1,
ρ(1) = min

i
|d>si|, so maximizing ρ(1) over d is equivalent to (7).
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4. MINIMAX LEARNING
Dictionary learning techniques most often iterate two main steps: the
sparse coding step where we fix the dictionary and calculate the un-
known representation matrix, say Y, and the dictionary update step.
In the literature, sparse coding can be divided into three categories:
greedy approaches (e.g. OMP [19], SP [20], IHT [21]), global ap-
proaches (e.g. `1 [22,23]) and Bayesian approaches (e.g. RVM [24],
BCS [25]). For dictionary update, there exist also many strategies
(MOD [26], K-SVD [10], etc.). This stage relies most often on a
Mean Square Error criterion. As we will see, this criterion tends to
represent well an average behavior of the atoms within an identified
class and may consequently not be appropriate for minimax objec-
tives. We thus propose below a modification of the dictionary update
stage instantiated in the K-SVD algorithm (Sec.4.1) to suit the min-
imax strategy. In Sec.4.2, we describe another minimax learning
algorithm based on the analysis of Sec.3.2.

4.1. K-minimax: K-SVD and minimax

For a library S, K-SVD optimizes the dictionary by finding an ap-
proximate solution of

min
D,Y
‖S−DY‖2F subject to ∀i, ‖yi‖0 ≤ T.

We set T = 1, in agreement with the unit `0 pseudonorm considered
in the test (4)-(5). This encourages each si to be well represented by
at least one column of the learned dictionary.

In the K-SVD algorithm, the dictionary update exploits the
Eckart-Young theorem: for T = 1, the rank-one approximation (in
Frobenius norm) of the vectors of a class as a product of a repre-
sentation column vector times a row vector of weights is obtained
through the SVD. This criterion may not be relevant in a framework
where minimax (instead of Euclidean) distance matters. We thus
propose to modify the SVD dictionary update for each class by the
minimax approach of (7), where the index i covers the atoms of the
considered class. We do not provide the pseudo-code of the resulting
algorithm because of space constraint, but we illustrate it in Fig.1:
(i) Start with an initial dictionary of r atoms (green dots; the black
dots represent the si).
(ii) Sparse coding stage: divide the set si into r clusters CK*

j ,
j = 1, . . . , r, with nearest neighbor rule (correlation criterion).
(iii) Minimax dictionary update : d∗ is computed for each class
CK*
j , by (7), which we note as dK*

j . The stages (ii) and (iii) are
repeated until convergence or a stopping rule, as in K-SVD. The al-
gorithm can be initialized with r samples randomly chosen from the
library S or, more efficiently, by first computing the global (r = 1)
minimax atom d∗, and then selecting the r − 1 atoms that are less
correlated to d∗ to better sample marginal alternatives. We use the
latter in Sec.5.2. The final dictionary is noted DK*

r .

i) ii)

Sparse coding stage
Identify the classes

iii)

Dictionary update
Minimax per class

C1
K* C2

K*

C3
K*

Fig. 1: Illustration of the “K-minimax” algorithm for r = 3.

4.2. A greedy minimax algorithm

We propose here a heuristic optimization based on the analytical ap-
proximation of Sec. 3.2. This is illustrated in Fig.2 for r = 3:
(i) First, compute through (7) the global minimax atom d∗ repre-
senting the whole set of alternatives in S (blue star).
(ii) Identify the alternative si∗ that is the most poorly represented

by D (i.e., of minimum correlation) (white dot). Select one at ran-
dom if they are multiple. The expected result of this step is to obtain
subspaces that are well separated, thus producing learned atoms that
are discriminative and sample well the diversity of the alternatives.
The set si are then classified into j = 2 classes or clusters (C∗1,C∗2)
by nearest neighbor rule, and one atom d∗ is generated through (7)
for each cluster, representing the updated learned dictionary columns
(blue stars).
(iii) A new class is opened using the farthest alternative to the current
columns. Nearest neighbor rule results in three new classes whose
minimax centers constitute the final dictionary D∗3. The pseudo-
code of this Algorithm is given below.

i) iii)ii)

D2 = [d  si*,1]
~

* = [            ]D3

~
* D2

*

C3
C1

C2

C1

C2

C1

C2

C3

si*,1

si*,2

si*,2

C1
*

C2
*

*

*

*
*

*

*

*

*

* D2 = [d1  d2  ]
* * * D3 = [d1  d2  d3 ]

* * **D1 = d* *

Fig. 2: Illustration of a greedy minimax algorithm, r=3.

Algorithm 1 Greedy minimax dictionary learning for r > 1

Inputs: S ∈ RN×L = [s1, . . . , sL], r.

Initialization: j = 1, D∗j = d∗ ∈ RN as obtained in (7).
Set: j = 2,
si∗,j−1 = arg min

s1,...,sL
|d∗>si|,

D̃∗j = [d∗ si∗,j−1],

while j ≤ r do
• Classification stage:
Each signal si is assigned to the class of atom d̃∗l of D̃∗j if
|s>i d̃∗j | > |s>i d̃∗k|, ∀k 6= j. This yields j clusters C∗l=1,...,j .

• Dictionary update stage:
for l = 1 : j

d∗l = arg max
d:‖d‖2=1

min
si∈Cl

|d> si|.
end
D∗j = [d∗1, . . . ,d

∗
j ],

si∗,j = arg min
i
‖D∗>j si‖∞,

D̃∗j+1 = [D∗j si∗,j ] ,
j = j + 1.

end while

Output: D∗r = D∗j .

5. NUMERICAL RESULTS
5.1. Minimax learning of faces

To illustrate the behavior of the considered algorithms, we display
some results in the case where the library S is a database of faces.
L = 40 front-facing subjects (Fig.3(a)) were selected from the ORL
Database of Faces by AT&T Laboratories Cambridge [27], repre-
senting the set of possible alternatives underH1.

Figs. 3(b) and 3(c) show respectively the learned 1-dimensional
atoms for the minimax approach with r = 1 (d∗) and the classi-
cal K-SVD algorithm (dK-SVD). These images show that while d∗

captures the marginal features (glasses, different eyes, noses, and
mouths positions), the dK-SVD atom tends to represent an “average
face” with shared and smoothed characteristics. Fig.3(d) shows the
results for the greedy minimax approach in the case r=3. Allowing
for more atoms yields a dictionary whose axes dissociate to focus on
specific “outliers”. In particular, the second atom depicts a woman
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face whose features are very different (in a correlation sense) from
the others. The first atom is similar to d∗ but with some features
removed, features that are trapped by the third atom.

(a) S : database of 40 faces (possible alternatives under H1)

(b) d∗ (c) dK-SVD (d) D∗3 = [d∗1 d∗2 d∗3]

Fig. 3: (a) Database of 40 faces. (b) Minimax, r = 1; (c) K-SVD,
r = 1; (d) Greedy-minimax, r = 3. K-SVD represents average
features while minimax algorithms capture marginal features.

5.2. Minimax detection of spectral profiles

We report numerical experiments in the framework of the hyperspec-
tral data of MUSE, which is a spectrograph built to observe very
distant galaxies and will deliver data cubes of 300 × 300 pixels
at 3600 visible wavelength channels. A library of spectral profiles
S ∈ R3600×9745 is available from astrophysical simulations. To
compute ROC curves and Area Under the Curves (AUC) for all the
tested alternatives, we limit for the present study the library dimen-
sion to S ∈ R100×100 (from 9745 spectral lines, we extracted the
first 100 examples, and each spectral line was restricted to an in-
terval of about N = 100 contiguous wavelength channels centered
around the line’s maximum). The minimax detection performances
are evaluated through the AUC of ROC curves computed for each
alternative si activated one by one (i = 1, . . . , 100) (cf. Fig.4).

The performances of five learned dictionaries are evaluated: two
of them generated by the K-SVD algorithm for r = 1 and r = 21
(dK-SVD and DK-SVD

21 ), another two by the greedy minimax approach
for the same pair of r values (d∗ and D∗21), and the last dictionary
by the K-minimax of Sec.4.1 for r = 21 (DK∗

21 ). Note that the case
where all alternatives S = S100 are tested is shown here for compar-
ison purposes (in Table 1 and Fig.4: red-dashes, close to the orange
and blue curves). In practice, computing average and minimax pow-
ers over all alternatives may not be possible for large L.

If we first consider AUC results averaged over all alternatives
(i.e., the usual criterion, but indeed not the one under focus), the sec-
ond column of Table 1 and Fig.4 show that the best performances are
obtained by the classical K-SVD: the first is dK-SVD corresponding
to r = 1 (pink, dash-dot), which is nearly as good as the reference
(i.e., the “Oracle” Neyman-Pearson (NP), to which the index of the
active alternative, but not its amplitude, is known, black dots), and
the second is DK-SVD

21 corresponding to r = 21 (green solid). Note,
from Fig.4, that K-SVD represents well most alternatives, but not
all of them (e.g. i = 10, 60, 90). Using K-SVD learned subspaces
with sparsity-constrained GLR testing results in a relatively lower
detection power for the corresponding spectral lines. We also see
that adding more atoms to the K-SVD dictionary decreases the over-
all performances (compare dK-SVD with DK-SVD

21 ) because this tends
to increase more significantly the false alarm than the detection rate.

In contrast, the proposed dictionaries d∗,D∗21 and DK∗
21 perform

better than the K-SVDs in term of minimax performances. The over-
all performances is more stable (e.g. limited loss at i = 60, 90).
The learned spectral profiles for DK-SVD

21 and D∗21 are displayed re-

spectively in Fig.5(b) and 5(c), showing again more diversity in the
minimax learning compared to classical K-SVD.

Comparing now the proposed optimization approaches for r >
1 (greedy-minimax D∗21: blue, circles; K-minimax DK∗

21 : orange,
crosses) to the minimax dictionary for r = 1 (d∗: cyan, diamonds),
we see that the minimax (and also the average) performances are
improved w.r.t. r = 1, which was the main objective of this study.
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Fig. 4: AUC for 100 instances underH1.
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Fig. 5: (a): Evolution of ρ(r) (cf. (12)). (b) and (c): learned atoms.

Dictionary Ranking Criterion
Min AUC (minimax) Average AUC

Atom underH1 Ref : 0.886 Ref : 0.887

S100 1st : 0.813 3rd : 0.847

d∗ 2nd : 0.794 6th : 0.836

dK-SVD 4th : 0.699 1st : 0.863

DK-SVD
21 3rd : 0.764 2nd : 0.849

D∗21 1st : 0.812 4th : 0.845

DK∗
21 1st : 0.813 5th : 0.843

Table 1: Results over 100 alternatives (uncertainty: ±0.001).

6. CONCLUSIONS
The proposed algorithms were shown to improve the minimax (and
as a side-effect, the average) detection performances w.r.t. to the
r = 1 case. We caution, however, that dictionaries learned from
large libraries (e.g. with L ∝ 104 or more), while keeping r still
in the tens, may not yield much improvement w.r.t. d∗, as too low
values of r (w.r.t. to L) may not be enough for the dictionary to
sample well the diversity of such large amounts of alternatives. This
poses the question, left unanswered here, of devising approaches to
find the best (w.r.t. minimax criteria) value of r. On this question,
we note that this value generally depends on the SNR. We observed
in particular that lower values of r may be preferable at lower SNR
regimes: when the noise level is high, testing additional target sub-
spaces may produce higher false alarm rates with only marginal im-
provement of the detection rate. The interplay between the intrinsic
separation of the main subpopulations of the alternatives w.r.t. to
the scatter caused by noise in the data suggests a library-dependent
compromise to be found in the number of target subspaces that are
learned and tested.
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