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ABSTRACT

Spectral clustering is sensitive to how graphs are construct-

ed from data. In particular, if the data has proximal and im-

balanced clusters, spectral clustering can lead to poor perfor-

mance on well-known graphs such as k-NN, ε-neighborhood

and full-RBF graphs. We propose a graph partitioning prob-

lem that seeks minimum cut partitions under minimum size

constraints on clusters to deal with imbalanced data. Our ap-

proach parameterizes a family of graphs by adaptively mod-

ulating node degrees on a fixed node set, to yield a set of

parameter dependent cuts reflecting varying levels of imbal-

ance. The solution to our problem is then obtained by op-

timizing over these parameters. We present asymptotic limit

cut analysis to justify our approach. Experiments on synthetic

and real data sets demonstrate the superiority of our method.

Index Terms— Spectral Clustering; Imbalanced Data;

RatioCut/Normalized Cut

1. INTRODUCTION

Data with imbalanced clusters arises in many learning appli-

cations and has attracted much interest [1]. In this paper we

focus on graph-based spectral methods for clustering tasks.

In spectral methods, a graph representing data is first con-

structed and then spectral clustering (SC) [2, 3] is applied

on the graph. Common graph construction methods include

ε-graph, fully-connected RBF-weighted(full-RBF) graph and

k-nearest neighbor (k-NN) graph. Of the three k-NN graphs

appears to be most popular due to its relative robustness to

outliers [4, 5]. We show that the poor performance of spec-

tral methods on imbalanced data can be attributed to applying

Ratio-Cut (RCut) or normalized cut (NCut) minimization ob-

jectives on traditional graphs, which sometimes tend to em-

phasize balanced partition size over small cut-values.

To deal with imbalanced data we propose partition con-

strained minimum cut problem (PCut). Size-constrained min-

cut problems appear to be computationally intractable [6, 7].

Instead we attempt to solve PCut on a parameterized fami-

ly of cuts. To realize these cuts we parameterize a family of

graphs over some parametric space λ ∈ Λ and generate candi-

date cuts using spectral methods as a black-box. This requires

a sufficiently rich graph parameterization capable of approx-

imating varying levels of imbalanced data. To this end we

introduce a novel parameterization for graphs that adaptive-

ly modulates node degrees in varying proportions. We then

solve PCut on a baseline graph over the candidate cuts ob-

tained from this parameterization. Fig. 1 depicts our approach

for binary clustering. Our limit cut analysis shows that our ap-

proach asymptotically does adapt to imbalanced clusters. We

demonstrate the superiority of our method through unsuper-

vised clustering experiments on synthetic and real data sets.
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Fig. 1. Proposed Framework for Clustering on Imbalanced Data.

Related Work:
Sensitivity of spectral methods to graph construction is well

documented [5, 8, 9]. [10] suggests an adaptive RBF parame-

ter in full-RBF graphs to deal with imbalanced clusters. [11]

describes these drawbacks from a random walk perspective.

[12, 13] also mention imbalanced clusters, but none of these

works explicitly deal with imbalanced data. Besides, our ap-

proach is complementary to their schemes and can be used

in conjunction. Another related approach is size-constrained

clustering [14, 15, 16, 17, 18, 6], which is shown to be NP-

hard. [19] proposes sub-modularity based schemes that work

only for some special cases. Besides, these works either im-

pose exact cardinality constraints or upper bounds on the clus-

ter sizes to look for balanced partitions. While this is related,

we seek minimum cuts with lower bounds on smallest-sized

clusters. Minimum cuts with lower bounds on cluster size

naturally arises because we seek cuts at density valleys (ac-

counted for by the min-cut objective) while rejecting single-

ton clusters and outliers (accounted for by cluster size con-

straint).

The organization of the paper is as follows. In Section 2

we propose our partition constrainted min-cut (PCut) frame-

work and describe our algorithm. We explore the theoretical

analysis in Section 3. In Section 4 we present clustering ex-

periments on synthetic and real data sets to show significant

improvements when data is imbalanced.
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2. PARTITION CONSTRAINED MIN-CUT (PCUT)

Assume that data is drawn IID from some unknown density

f(x), where x ∈ Rd. Let G = (V, E, W ) be a weighted

undirected graph constructed from n samples. Each node v ∈
V is associated with a data sample. Edges are constructed

using one of several graph construction techniques such as k-

NN graph. The weights on the edges are similarity measures

such as RBF kernels that are based on Euclidean distances.

We denote by S a cut that partitions V into CS and C̄S . The

cut-value associated with S is:

Cut(CS , C̄S) =
∑

u∈CS ,v∈C̄S ,(u,v)∈E

w(u, v) (1)

For binary clustering tasks, the aim is to seek a hypersurface

S that samples within each cluster resulted from S are simi-

lar to each other while dissimilar across clusters. The simple

min-cut framework directly aims at low-density cuts, but is

well known to be vulnerable to outliers. Spectral clustering

attempts to minimize RCut/NCut objectives:

min
S

: Cut(CS , C̄S)

(
size(V )

size(CS)
+

size(V )

size(C̄S)

)
, (2)

where size(C) =
∑

u∈C,v∈V w(u, v) for NCut and size(C) =
|C| for RCut. Both objectives seek to trade-off small cut-

values against cut size. While robust to outliers, minimizing

RCut (NCut) can lead to poor performance when data is

imbalanced, as will be shown in experiments.

We now propose our partition constrained min-cut (PCut)

problem in finite data setting, which seeks low-density cuts

with lower bounds on the size of the smallest cluster obtained:

S∗ = argmin
S

{
Cut(CS , C̄S) | min{|CS |, |C̄S |} ≥ δ|V |} .

(3)

Eq.(3) describes a binary partitioning problem but gener-

alizes to arbitrary number of partitions. Note that different

from other size-constrained partitioning methods [16, 17, 18]

which either focus on balanced partitions or cuts with exact

cardinality constraints, we aim to identify natural low-density

cuts that are not too small. Various versions of this problem is

known to be NP-hard [7]. We here employ SC as a black-box

to generate candidate cuts on a suitably parameterized fami-

ly of graphs. Specifically, our idea is a parameterization that

selectively removes/adds edges in low/high density regions,

inducing a much smaller cut value at density valleys. This

is achieved by modulating node degrees based on ranking of

data samples, which reflects the relative density at nodes. We

call the resulting graph the Rank-Modulated Degree (RMD)

graph. Eq.(3) is then optimized over these candidate cuts.

2.1. PCut: Algorithms

Given n data samples, our task is unsupervised clustering, as-

suming the number of clusters/classes K is known. We start

with a baseline k0-NN graph G0 = (V,E0) built on samples

with k0 large enough to ensure graph connectivity. Main steps

of our PCut are as follows.

Main Algorithm: RMD Graph-based PCut
1. Compute the rank R(xi) of xi, i = 1, ..., n;

2. For different parameter configurations,

a. Construct the parametric RMD graph;

b. Apply spectral clustering to obtain a K-partition

on the current RMD graph;

3. Among various partition results, pick the “best”.

(1) Rank Computation:
We compute the rank R(v) of every node v as follows:

R(xv) =
1

n

∑
w∈V

I{η(xv)≤η(xw)} (4)

where I denotes the indicator function, η(xv) is some statistic

reflecting the relative density at v. We here choose average

nearest neighbor distance, where N(v) is the set of neighbors

of v on the baseline graph:

η(xv) =
1

|N(v)|
∑

w∈N(v)

‖xv − xw‖. (5)

It is shown that this statistic outperforms other choices such

as single k-NN distance or ε-neighborhood density in [20].

(2) Parameterized family of RMD graphs:
We connect each node v with its kλ(v) nearest neighbors:

kλ(v) = k(λ+ 2(1− λ)R(xv)), (6)

This generates RMD parameterization. In experiments we al-

so vary k and RBF parameter σ for a richer family of RBF-

RMD graphs. Let G(λ, k, σ) be the generated graph with pa-

rameter λ, k, σ.

(3) Parameterized family of cuts:
Spectral clustering is applied on G(λ, k, σ). We thus ob-

tain a family of K-partitions: C1(λ, k, σ), C2(λ, k, σ), . . .,
CK(λ, k, σ).
(4) Parameter Optimization:
The final step is to solve Eq.(3) on the baseline graph G0. We

assume prior knowledge that we want partitions of which the

smallest cluster is at least of size δn.

minλ,k,σ{Cut0 (C1, ..., CK) =
∑K

i=1 Cut0(Ci, C̄i)} (7)

s.t. min{|C1(λ, k, σ)|, ..., |CK(λ, k, σ)|} ≥ δn

Cut0(·) denotes evaluating cut values on the baseline graph

G0. Partitions with clusters smaller than δn are discarded.

Remark:
1. Although step (4) suggests a grid search over several pa-

rameters, it turns out that other parameters such as k, σ do

not play an important role as λ. Indeed, Sec.4 will show that

3082



while step (4) can select appropriate k, σ, it is by searching

over λ that adapts spectral clustering to data with varying lev-

els of imbalancedness (also see Thm.2).

2. Our framework uses existing spectral algorithms and so

can be combined with other graph-based partitioning algo-

rithms to improve performance for imbalanced data, such as

1-spectral clustering, sparsest cut or minimizing conductance

[12, 21, 22, 23].

3. ANALYSIS

To justify our method, we establish asymptotic consistency

of ranks and the limit cut behavior of spectral clustering on

RMD graph. Due to space limit we omit the proofs.

Suppose f(·) has a compact support and is continu-

ous and bounded: fmax ≥ f(x) ≥ fmin > 0. It is

smooth, i.e. ||∇f(x)|| ≤ λ, where ∇f(x) is the gradi-

ent of f(·) at x. There is no flat regions, i.e. ∀σ > 0,

P {y : |f(y)− f(x)| < σ} ≤ Mσ for all x in the support,

where M is a constant.

First we show the rank R(y) at some point y converges

to the p-value function p(y). Note that p exactly follows the

shape of f and always ranges in [0, 1] no matter how f scales.

Theorem 1. Assume f(x) satisfies the above regularity con-
ditions. As n → ∞, we have

R(y) → p(y) :=

∫
{x:f(x)≤f(y)}

f(x)dx. (8)

Next we study the limit behavior of RCut (NCut) induced

on unweighted RMD graph. Assume for simplicity that each

node v is connected to exactly kλ(v) nearest neighbors of

Eq.(6).

Theorem 2. Assume f satisfies the above regularity condi-
tions and also the general assumptions in [8]. S is a fixed
hyperplane in Rd. Unweighted RMD graph is generated ac-
cording to Eq.(6), where λ ∈ (0, 1) is a constant. Let ρ(x) =
λ+2(1−λ)p(x). Assume d ≥ 2, kn/n → 0 and kn/ logn →
∞. Then as n → ∞ we have that:

1

kn
d

√
n

kn
RCutn(S) −→ CdBS

∫
S

f1− 1
d (s)ρ1+

1
d (s)ds.

(9)

d

√
n

kn
NCutn(S) −→ CdBS

∫
S

f1− 1
d (s)ρ1+

1
d (s)ds. (10)

where Cd = 2ηd−1

(d+1)η
1+1/d
d

, BS =
(
μ(C+)−1 + μ(C−)−1

)
,

and μ(C±) =
∫
C± f(x)dx.

Remark: In the limit cut behavior, without ρ term, the bal-

ancing term BS = 1/α(1−α) could induce a larger RCut (N-

Cut) value for density valley cut than balanced cut when the

underlying data is imbalanced. Our RMD scheme appends

ρ(s) = (λ + 2(1 − λ)p(s)), which is monotonic in p-value.

So the cut-value at low/high density regions can be signifi-

cantly reduced/increased. Indeed for small λ value, cuts S
near peak densities have p(s) ≈ 1 and so ρ(s) ≈ (2)1+

1
d ,

while near valleys we have ρ(s) ≈ (λ)1+
1
d � 1.

4. EXPERIMENTS

We carry out unsupervised clustering experiments on both

synthetic and real data sets. We focus on imbalanced data by

randomly sampling from different classes disproportionately.

We compare our RMD graph with full-RBF, ε-graph, RBF k-

NN, b-matching graph [9] and full graph with adaptive RBF

(full-aRBF) [10], all conducted within our PCut framework.

We view each as a family of graphs parameterized by their

relevant parameters and optimize over different parameters as

described in Sec. 2.1 and Eq.(7). Error rates are averaged over

20 trials.

Time Complexity: RMD graph construction is O(dn2logn)
(similar to k-NN graph). Computing cut value and checking

cluster size for a partition takes O(n2). So if totally D graphs

are parameterized; complexity of learning algorithm is T , the

time complexity is O(D(dn2logn+ T )).
Tuning Parameters: Note that the only parameters left are: (a)

k0 in the baseline graph. This is fixed to be
√
n. (b) Size

threshold δ. We fix this a priori to be about 0.05, i.e., 5% of

all samples.

Evaluation against Oracle: To evaluate the effectiveness of

our framework (Fig.1) and RMD parameterization, we com-

pare against an ORACLE that is tuned to both ground truth

labels as well as imbalanced proportions.
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Fig. 2. Results of 3-way RCut-based spectral clustering on 2

moons and 1 gaussian component data set.

Synthetic Illustrative Example
Consider a multi-cluster complex-shaped data set consisting

of 1 small Gaussian and 2 moon-shaped proximal clusters in
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Table 1. Error rates of normalized SC on various graphs for imbalanced real data sets. First row (“BO” Balanced Oracle) shows

RBF k-NN results on imbalanced data with k, σ tuned using ground truth labels but on balanced data. Last row (“O” Oracle)

shows the best ORACLE results of RBF RMD on imbalanced data.

Error Rates (%)
USPS SatImg OptDigit LetterRec

8vs9 1,8,3,9 4vs3 3,4,5 1,4,7 9vs8 6vs8 1,4,8,9 6vs7 6,7,8

RBF k-NN (BO) 33.20 17.60 15.76 22.08 25.28 15.17 11.15 30.02 7.85 38.70

RBF k-NN 16.67 13.21 12.80 18.94 25.33 9.67 10.76 26.76 4.89 37.72

RBF b-match 17.33 12.75 12.73 18.86 25.67 10.11 11.44 28.53 5.13 38.33

full-RBF 19.87 16.56 18.59 21.33 34.69 11.61 15.47 36.22 7.45 35.98

full-aRBF 18.35 16.26 16.79 20.15 35.91 10.88 13.27 33.86 7.58 35.27

RBF RMD 4.80 9.66 9.25 16.26 20.52 6.35 6.93 23.35 3.60 28.68

RBF RMD (O) 3.13 7.89 8.30 14.19 18.72 5.43 6.27 19.71 3.02 25.33

Fig.2. Sample size n = 1000 with the rightmost small clus-

ter 10% and two moons 45% each. This example is only for

illustrative purpose with a single run, so we did not parame-

terize the graph or apply step (4). We fix λ = 0.5, and choose

k = l = 30, ε = σ = d̃k, where d̃k is the average k-NN dis-

tance. Model-based approaches can fail on such dataset due

to the complex shapes of clusters. The 3-way SC based on

RCut is applied. On k-NN and b-matching graphs SC fails

for two reasons: (1) SC cuts at balanced positions and cannot

detect the small cluster; (2) SC cannot recognize the winding

low-density regions between 2 moons due to too many spuri-

ous edges. SC fails on ε-graph (similar on full-RBF) because

the outlier point forms a singleton cluster, and also cannot

recognize the low-density curve. While robust to outliers, our

RMD graph significantly sparsifies the graph at low-density

regions, enabling SC to cut along the valley and detect the

small cluster.

Real Experiments
We focus on imbalanced settings and apply normalized spec-

tral clustering on several real datasets including USPS (256-

dim), Statlog landsat satellite images (4-dim), letter recogni-

tion images (16-dim) and optical recognition of handwritten

digits (16-dim) [24]. We construct k-NN, b-match, full-RBF

and RMD graphs all combined with RBF weights, but do not

include ε-graph due to its overall poor performance [9].

Our sample size varies from 750 to 1500. We discretize

not only λ but also k, σ to parameterize graphs. We vary k in

{5, 10, 20, 30, . . . , 100, 120, 150}. While small k may lead to

disconnected graphs this is not an issue since singleton cluster

candidates are ruled infeasible in our PCut framework. Also

notice that for λ = 1, RMD graph is identical to k-NN graph.

For RBF parameter σ it has been suggested to be of the same

scale as the average k-NN distance d̃k [25]. This suggests

a discretization of σ as 2j d̃k with j = −3, −2, . . . , 3. We

discretize λ ∈ [0, 1] and varied in steps of 0.2. Data sets are

sampled in an imbalanced way shown in Tab.2.

In Tab.1 the first row is the imbalanced results of RBF

k-NN using ORACLE k, σ parameters tuned with ground-

truth labels on balanced data for each data set (300/300,

Table 2. Imbalancedness of data sets.
Data sets #samples per class

2-class (eg. USPS 8vs9) 150/600

3-class (eg. SagImg 3/4/5) 200/400/600

4-class (eg. USPS 1/8/3/9) 200/300/400/500

250/250/250, 250/250/250/250 samples for 2,3,4-class cas-

es). Comparison of first two rows reveals that the ORACLE

choice on balanced data may not be suitable for imbalanced

data, while our PCut framework, although agnostic of the

labels, picks more suitable parameters k, σ for RBF k-NN

graph.

The last row presents ORACLE results on our RBF-RMD

graph tuned to imbalanced data. Comparison of the last two

rows shows that our PCut on RMD, agnostic of true labels,

closely approximates the oracle performance. Furthermore,

Tab.1 demonstrates that our RMD graph parameterization e-

quipped with PCut framework performs consistently better

than other methods.

5. CONCLUSION

In this paper we propose the partition constraint min-cut (P-

Cut) framework, which seeks min-cut partitions under min-

imum cluster size constraints. Since constrained min-cut is

NP-hard, we adopt existing spectral methods (SC, GRF, G-

TAM) as a black-box subroutine on a parameterized family

of graphs to generate candidate partitions and solve PCut on

these partitions. The parameterization of graphs is based on

adaptively modulating node degrees in varying levels to adapt

to different levels of imbalanced data. Our framework au-

tomatically selects the parameters based on PCut objective,

and can be used in conjunction with other spectral partition

methods such as 1-spectral clustering, cheeger cut or sparsest

cut. Our idea is then justified through limit cut analysis and

demonstrated by both synthetic and real experiments.
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