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ABSTRACT

Many current speech models used in recognition involve
thousands of parameters, whereas the mechanisms of speech
production are conceptually very simple. We present and
evaluate a new continuous state probabilistic model (CS-
HMM) for recovering dwell-transition and phoneme se-
quences from dynamic speech production features. We show
that with very few parameters, these features can be tracked,
and phoneme sequences recovered, with promising accuracy.

Index Terms— Speech Analysis, Probabilistic Model,
Dynamic Features, Continuous State Hidden Markov Model

1. INTRODUCTION

The mechanisms of speech production are conceptually very
simple. A small number of speech articulators move together
to generate all the sounds found in speech. This premise has
been used to build rule-based speech synthesis systems using
few parameters, which when carefully tuned produce synthe-
sized speech approaching natural speech in quality [1, 2]. The
motion of these articulators is continuous, therefore a large
part of speech consists in smooth motion of the acoustic fea-
tures from properties defined by one sound to another. Acous-
tic feature vectors representing speech are therefore not time-
independent, a fact indicated by the smooth formant tracks
seen in spectrograms [2, 3, 4].

In contrast, conventional speech recognition models
assume that speech can be represented by a sequence of
discrete, independent events, such as the production of
phonemes. In a typical system (e.g. [5]), Hidden Markov
Models with Gaussian Mixture output distributions (GMM-
HMMs) model each phoneme in its context of neighbour-
ing phonemes. Speech is coded as Cepstral feature vectors
(MFCCs [6]), plus a spectral energy coefficient, plus time
derivatives. This results in many thousands of parameters,
which attempt to implicitly model the variability and dy-
namics of speech [3], although parameters of similar states
may be tied in an effort to reduce the total parameters in the
model. Coded speech vectors are assumed to be in general
time-independent, with only some approximation to local
dependencies through the use of derivative features.

Recent advances in speech recognition have used Deep
Belief Networks (DBNs). These multi-layer neural networks
have increased the number of parameters still further and rely
on ever larger corpora to estimate these parameters. While
DBNs have improved speech recognition accuracy, no at-
tempt has been made to reconcile the fundamental differences
between speech production and recognition models.

Attempts have been made to define more faithful mod-
els of speech. Hidden Semi-Markov models [7], segmental
HMMs [8], trajectory models, e.g. [3, 9, 10], intermediate
state models [11] and Gaussian process dynamical models
[12] variously relax assumptions of temporal independence or
static behaviour, e.g. outputting sequences of feature vectors
from each state, or modelling speech dynamics directly in an
articulatory or formant-based representation. Dynamic sys-
tems approaches [3, 4, 10, 13, 14] aim to account for variabil-
ity and coarticulation by modelling the evolution of features
more closely related to speech production, mapped (typically
non-linearly) to the acoustics. Other work tries to directly re-
cover real articulatory features for speech recognition, possi-
bly in conjunction with the acoustic data (e.g. [15]). Problems
with these models have included computational inefficiency,
and difficulty extracting adequate quality features.

We describe and evaluate a new parsimonious model for
speech analysis, inspired by the Holmes-Mattingley-Shearme
model [16] and in the spirit of early work due to Bridle, Pali-
wal and others [17, 18] which proposed modelling articula-
tion as a series of target frequencies (dwell phases) connected
by transitions. Our continuous-state hidden Markov model
(CS-HMM) is a variant of the Hidden Gaussian Markov Mod-
els described by Ainsleigh et al. [19], but to the best of our
knowledge this is the first time that such a model has been ap-
plied to speech. It is computationally efficient, probabilistic
over the features and feature spaces with which it works, and
minimises unwarranted independence assumptions.

After introducing the theory in Section 2, in Section 3 we
show results of experiments applying the model to several ut-
terances from the TIMIT corpus [20]. From these early re-
sults we find that even using very simple features and few
parameters, this new model can faithfully track the underly-
ing dynamics of speech, and holds promise as the foundation
for future work to develop robust recognition algorithms.
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2. CS-HMM THEORY

A CS-HMM speech recogniser will resemble a discrete state
system in maintaining a list of hypotheses corresponding to
phonetic assumptions. Hypotheses specify whether they are
in a dwell or a transition, how many time steps they have
spent in the current dwell or transition, the identity of the cur-
rent phoneme (for dwells) or the phoneme recently left (for
transitions) and enough phonetic history to apply a language
model. The difference is that in a CS-HMM each hypothesis
is characterised by a discrete component, here the phonetic
history, and by additional continuous state variables. By us-
ing a parametric representation, each hypothesis stores infor-
mation about an infinite set of states.

The information takes the form of a Baum-Welch alpha
value, written αt(x) where x ∈ Rd is a vector of continu-
ous state variables and t is time. This value is the sum of
path probabilities over all paths arriving in state x at time t,
where a path probability is the product over previous times of
the state probability (conditioned on its predecessor) and the
observation probability, and where we loosely use the term
‘probability’ to denote the value of a probability density func-
tion. The paths are limited to those through the same sequence
of discrete state components, that is phonetic history.

The alphas are assumed to take the parametric form

αt(x) = Kt n(x− µt, Pt) (1)

for some scale factorKt and additional parametersµt and Pt,
where for convenience we define

n(x, P ) = (2π)−d/2|P |1/2 exp{− 1
2x

TPx} (2)

with P a precision matrix (the inverse of a covariance). The
scale factor Kt is the sum of probabilities of all paths con-
sistent with a given hypothesis, which is the right quantity to
threshold on when pruning a list of hypotheses. Kt is taken
as the score of a particular hypothesis.

We assume that a phoneme inventory, of sizeNφ, has been
created. For each phoneme φwe record the canonical formant
frequencies fφ and precision A with which these frequencies
are realised in any particular example of the phoneme. In
this work we assume a global A across all phonemes, but this
could vary by phoneme. In this work, we refer to formants
but the method can be applied to any low-dimensional repre-
sentation of speech.

We begin the induction by assuming that the first time step
is the start of a dwell period for some phoneme φ. The con-
tinuous state component x is the 3-long vector of realised for-
mant frequency targets whose prior probability density func-
tion (PDF) determines the initial alphas

α0(x) = n
(
x− fφ, A

)
(3)

where fφ is from the phoneme inventory. There is an ini-
tial hypothesis for each phoneme in the inventory. The initial

alphas are written in the form (1), and the inductive calcula-
tion shows that this form is retained through the entire time
sequence.

Suppose a dwell state at time t−1, with the hypothesis
parametrised as (1), and observation yt is made. Assuming
Gaussian measurement errors, the observation is drawn from
the distribution with PDF n(yt − x, E) where E is the mea-
surement precision. The hypothesis can be updated to take
account of this observation

αt(x) = Kt−1 n
(
x− µt−1, Pt−1

)
n(yt − x, E) ,

= Kt n(x− µt, Pt) (4)

where

Pt = Pt−1 + E, (5)

µt = P−1
t

(
Pt−1µt−1 + Eyt

)
, (6)

Kt = Kt−1 n
(
yt − µt−1,

(
P−1
t−1 + E−1

)−1
)
. (7)

On entering a transition region, we append 3 formant
slope values s to the continuous state component. The alpha
for the first step of the transition, given observation yt, is

αt(x, s) = Kt n

((
x
s

)
− µt, Pt

)
(8)

where µt has been extended to a 6-dimensional vector and Pt
is a 6× 6 precision matrix

µt =
(

µt−1

yt − µt−1

)
, (9)

Pt =
(
Pt−1 + E E

E E

)
(10)

and Kt =Kt−1. The observation has been accounted for by
setting the slope components appropriately (see (9)) and so
the hypothesis score Kt is not changed.

For subsequent steps through a transition region observa-
tion yt, made h steps into the transition, is drawn from a dis-
tribution with PDF n(yt − (x+ hs), E), and we write the
alphas as in (8) with

Pt = Pt−1 +
(
E hE
hE h2E

)
, (11)

µt = P−1
t

(
Pt−1µt−1 +

(
Eyt
hEyt

))
, (12)

Kt = Kt−1

√
|Pt−1||E|
|Pt| (2π)3

(13)

× exp{− 1
2

(
µTt Ptµt − µTt−1Pt−1µt−1 − yTt Eyt

)
}.

A more complicated step arises when we move from a
transition region to a dwell state. During the transition, hy-
pothesis αt is parametrised by x and s, the frequency values
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at the beginning of the transition and the slope in the tran-
sition. Assuming the transition has lasted h frames then we
wish to reparametrise in terms of x′ = x + hs the formant
frequencies at the beginning of the next dwell. Thus, we must
marginalise against the slope variables

αt(x′) =
∫
αt(x, s) ds =

∫
αt(x′ − hs, s) ds, (14)

= Kt n(x′ − µ′, P ′) , (15)

with the integrand in (14) being of the form (8). The quan-
tities µ′ and P ′ must be computed. For full details of this
calculation refer to [21].

2.1. Language and phoneme modelling

At the beginning of a dwell region, knowledge of any lan-
guage model and the expected formant frequencies for each
phoneme is included. For simplicity in this paper we use
the equivalent of no language model, that is we assume any
phoneme may follow any other with equal probability — this
is accounted for by the 1/Nφ factor below. Each hypothesis
branches into Nφ hypotheses, one for each phoneme,

α
(i)
t (x) = αt(x) 1

Nφ
n(x− f i,A) , (16)

where αt(x) taken from (15), dropping the primes.

2.2. Timing models

A second method for branching is given by the timing model,
that is the distribution of persistence times for dwell and tran-
sition regions. We assume dwell times are integer, drawn
uniformly in the range [dmin, dmax] and similarly, transition
times are in the range [tmin, tmax].

Suppose a hypothesis has spent h frames in a dwell state
with dmin ≤ h ≤ dmax. Then there is a possibility the next
frame will be in a transition region. Therefore, the hypothesis
branches with the possibilities being remaining in the dwell,
with probability p, or beginning a transition, with probability
1−p. For a consistent description, the hypothesis likelihood,
Kt, is updated with these probabilities. Essentially the same
argument applies within transition regions moving to dwells.

2.3. Thresholding

As observations are made, the total number of hypotheses
which must be considered grows exponentially. We maintain
the best 250 hypotheses provided their likelihoods Kt satisfy
logKt> logκ−100 where κ is the largest likelihood.

Ideally, we should not make any hard decisions about the
phoneme recovery until the end of the audio sample and then
the most likely hypothesis holds the recovered sequence of
phonemes. For the results shown in this paper, we defer mak-
ing any decision by 20 frames (0.2s). Any hypothesis which
is inconsistent with the (delayed) decision is removed.
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Fig. 1. Spectrogram and CS-HMM recovered formant tracks
(blue solid) for TIMIT file test/dr2/mwew0/sx11. Vertical
dashed lines (red) show the TIMIT phoneme boundaries.
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Fig. 2. As Figure 1 but for TIMIT file train/dr6/mrmb0/sx231.
The correct transcription is /hh ay aa n er m ay m aa m/ (‘I
honor my mom’); the CS-HMM finds /hh ay aa n er m aa ay
m aa m/.

3. RESULTS

To illustrate the CS-HMM technique we apply it to formant
tracks, using data from the VTR database [22]. This database
contains hand corrected formant tracks for a selection of
TIMIT sentences [20]. The TIMIT phoneset is reduced to a
phoneset of size 39 [23].

Figure 1 shows the results for a single file. Here the cor-
rect transcription is /hh iy w l ah l aw er r eh r l ay/ for the
phrase ‘he will allow a rare lie’. Constructing a phoneme
inventory from the VTR data, and assuming the central 70%
of a phoneme represents the dwell phase, we recover the
phoneme sequence /hh iy w l ah l aw ah er r eh r l ay/.
In most cases the transition regions correspond to the TIMIT
phoneme boundaries. These locations have been found as part
of CS-HMM recovery. There is a single phoneme inserted, an
/ah/ at 0.75s. From the underlying spectrogram, we can see
that the transition from /aw/ to /er/ actually has a sharp drop

3068



0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

0

500

1000

1500

2000

2500

3000

Fr
e
q
u
e
n
cy

 (
H

z)

Fig. 3. As Figure 3 but for TIMIT file test/dr8/mjln0/sx9. The
correct transcription is /w eh ah w er y uw w aa l w iy w er ah
w ey/ (‘where were you while we were away’); the CS-HMM
finds /w eh w er eh y uw l aa w iy w er ah w ey/.

in F2 followed by a rise – this is the cause of the insertion.
The /aw/ phoneme is a diphthong. In the CS-HMM recovery
we see this diphthong split into component parts. There are
two instances of /r/, one from 0.9–1.0s and the second from
1.1–1.2s. Both are recognised correctly, but the frequency
estimates of each are quite different. This demonstrates one
strength of the model in explicitly stating that realisations of
a particular phoneme come from a distribution.

A second example is shown in Figure 2. Again, there is a
single phoneme insertion. The diphthong /ay/ at 0.8s has been
split into /aa ay/. Looking at other occurrences, the system is
matching /ay/ as the second part of diphthongs and so this is
actually the correct recovery for this file.

Our final example is shown in Figure 3. There are a num-
ber of errors, the first being a deleted /ah/ at 0.3s. Here, the
VTR data continues in a smooth linear transition and so there
is no phoneme dwell as assumed by our model. Listening to
the recording it is questionable whether the /ah/ phoneme can
be heard — it is labelled in TIMIT as having a duration of less
than four frames. The second error is the insertion of /eh/ at
0.45s. This has been inserted as there is a change in the slope
of the formant tracks and the only way this can be accom-
plished, within the model, is to insert a phoneme dwell then
begin a second transition. In this region of the audio, F2 and
F3 become close and so these slope changes could be a result
of how the VTR data was generated. The remaining errors are
a result of confusion between /l/ and /w/.

4. DISCUSSION

Our CS-HMM method, similar to Ainsleigh et al.’s HGMM
[19], models and recovers a speech signal encoded as smoothly
varying parameters of speech dynamics. The idea of mod-
elling at the segmental rather than frame level is not new,
having been postulated for ASR by Bridle and Ralls [17], and

applied in a statistical segmental pattern-matching manner by
Paliwal and Rao [18]. Ostendorf et al. [8] review various
segmental HMM and dynamic modelling approaches.

To the best of our knowledge, this paper is the first to
apply a CS-HMM to model speech utterances and recover
phoneme sequences, and as such is the most parsimonious
speech modelling and recovery algorithm of which we are
aware. Previous proposals for models with many fewer pa-
rameters than ‘standard’ discrete HMM and deep neural net-
work approaches (e.g. [3, 4, 14]) have nevertheless required
training of orders of magnitude more parameters than the CS-
HMM. While our model is in early development and may
need extension to account for the full range of characteristics
of natural speech, our results give cause for optimism that a
generally applicable model can be developed. The full theory
will be described in a forthcoming paper [21].

To analyse our approach, we applied it to Deng et al.’s
vocal tract resonance (VTR) data [22] extracted from TIMIT.
We showed that with careful parameter tuning, the CS-HMM
can recover sequences of phonemes found in TIMIT utter-
ances, and discrepancies are explainable phonetically or in
terms of the algorithm’s behaviour. It may be argued that
our experimentation is limited and in some ways artificial,
but it must be borne in mind that in this early work, we re-
quire very few parameters — 3 formant target frequencies for
each of 39 phonemes, 4 dwell duration parameters, and 6 non-
zero entries in the phoneme target frequency and observation
frequency precision matrices. The model carries out the full
segmentation and phoneme recovery, rather than re-scoring
n-best lists generated by a DS-HMM (e.g. [3, 4]). We use at
present no language model.

Our results compare favourably with the results from the
early segmental system described by Paliwal and Rao [18],
where training and test were on the same set of sentences
spoken by a single (male) speaker, on two occasions sepa-
rated by one week; and also the n-best list rescoring results
reported by Deng and Ma [3, 4] when we ignore those results
where the reference transcription was included in the n-best
list, or where critical phone alignment parameters of the dy-
namic models were hand-crafted.

5. FUTURE WORK

We have shown that an accurate phoneme inventory is crucial
and are currently developing mechanisms for more accurately
training this. We are also extending the CS-HMM framework
to handle the full range of speech sounds. Two further clear
extensions are to improve the timing model, it being reason-
ably well established that phoneme durations follow approxi-
mately a log-normal distribution; and to integrate a language
model, which could be quite strong, since a hypothesis may
contain many frames of context. We also intend to study more
formally the relationships between CS-HMMs, intermediate
state HMMs, and segmental models.
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