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ABSTRACT

It is well-known that the performance of the Gaussian Mixture
Model (GMM) based Acoustic-to-Articulatory Inversion (AAI) im-
proves by either incorporating smoothness constraint directly in
the inversion criterion or smoothing (low-pass filtering) estimated
articulator trajectories in a post-processing step, where smoothing is
performed independently of the inversion. As the low-pass filtering
is independent of inversion, the smoothed articulator trajectory sam-
ples no longer remain optimal as per the inversion criterion. In this
work, we propose a sparse smoothing technique which constrains
the smoothed articulator trajectory to be different from the estimated
trajectory only at a sparse subset of samples while simultaneously
achieving the required degree of smoothness. Inversion experi-
ments on the articulatory database show that the sparse smoothing
achieves an AAI performance similar to that using low-pass filtering
but in sparse smoothing ∼15% (on average) of the samples in the
smoothed articulator trajectory remain identical to those in the esti-
mated articulator trajectory thereby preserve their AAI optimality as
opposed to 0% in low-pass filtering.

Index Terms— acoustic-to-articulatory inversion, smoothing,
Gaussian mixture model, sparsity, chambolle-pock, `1 minimization

1. INTRODUCTION

Acoustic-to-articulatory inversion is the task of estimating articula-
tory representation from an acoustic representation. A number of
acoustic as well as articulatory representations could be used for
this task. In this work we use Mel Frequency Cepstral Coefficients
(MFCCs) as the acoustic representation. Similarly, for articulatory
representation we use articulatory movement data from Electromag-
netic Articulography (EMA). Depending on the representations in
the acoustic and articulatory domains, the acoustic-articulatory map
can be learnt in a number of ways – statistical models such as Gaus-
sian mixture model [1], mixture density network (MDN) [2], trajec-
tory hidden Markov model (HMM) [3] and generalized smoothness
criterion (GSC) [4], codebook approach [5] and Neural Network ap-
proaches [6]; a comprehensive summary of different mapping tech-
niques can be found in [7]. In this work we adopt the statistical
approach for modeling the map between acoustic and articulatory
spaces. In particular, we use the Gaussian mixture model (GMM)
for modeling the statistical mapping [1].
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In GMM based AAI, the articulatory representation is estimated
from the acoustic representation separately in each analysis frame
using minimum mean squared error (MMSE) criterion [1]. Without
any continuity constraint across frames, the articulator trajectories
estimated using GMM based AAI turn out to be rough and jagged
in nature unlike a realistic articulator trajectories which are slowly
varying and low-pass in nature [4]. It has been shown that a smooth
articulatory estimate could be obtained by incorporating smooth-
ness constraint directly in the inversion criterion or by smoothing
estimated articulator trajectories using low-pass filter in a post-
processing step [1, 8]. Both the integrated and separate smoothing
approaches result in statistically similar AAI performances [8]. In
this work we focus on smoothing as a post-processing step.

It is important to note that the samples of the smoothed artic-
ulator trajectory obtained by low-pass filtering, in general, differ
from the corresponding samples of the estimated articulator trajec-
tory from GMM based AAI. Thus, the smoothed articulatory rep-
resentations no longer remain optimal for AAI criterion. The artic-
ulator trajectories obtained from AAI are often used subsequently
for speech recognition [9, 10, 11, 12] and speech synthesis [13, 14].
One could consider an AAI criterion in a task-specific manner such
that the target task gets maximal benefit from the estimated articula-
tory features obtained by AAI; in such cases performing smoothing
could be detrimental for the task if the smoothing does not preserve
optimality for task-specific AAI criterion in the smoothed represen-
tation. In such scenarios, it is preferable to use a smoothing tech-
nique which also preserves the optimality for AAI criterion. In this
work, we propose a smoothing approach for GMM based AAI which
achieves the required degree of smoothness while at the same time
preserves MMSE optimality for as many samples of the smoothed
trajectory as possible. We refer to the proposed smoothing by sparse
smoothing because only a sparse subset of samples in the estimated
trajectory is altered to obtain the required smoothness as opposed to
all samples in the case of low-pass filtering in typical smoothing.

We formulate the sparse smoothing as an optimization problem
which reduces the high frequency components in the estimated ar-
ticulator trajectory by changing a minimal set of its samples. The
formulation is aimed at replacing the traditional ‘smoothing through
convolution’ by ‘smoothing through sparse addition’ approach.
Reduction of high frequency components results in a smooth and
slowly varying articulator trajectory. We present a computational
method for solving the sparse smoothing problem. Experiments on
articulatory dataset demonstrate that the sparse smoothing achieves
an inversion performance similar to that obtained by smoothing
using low-pass filtering. However, the key characteristic of sparse
smoothing is that it preserves the MMSE optimality for ∼15% of
the samples as opposed to 0% for the low-pass filtering. Thus the
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proposed sparse smoothing yields realistic smooth articulator trajec-
tories while simultaneously maintaining optimality of AAI criterion
for as many frames as possible.

2. DATASET AND PRE-PROCESSING

In this paper, we use the Multichannel Articulatory (MOCHA)
database [15] that contains speech and corresponding ElectroMag-
netic Articulography (EMA) data from one male and one female
talker of British English. The EMA data consist of dynamic posi-
tions of the EMA sensors in the midsagittal plane of the talker. Seven
sensors are placed on upper lip (UL), lower lip (LL), lower incisor
(LI), tongue tip (TT), tongue body (TB), tongue dorsum (TD), and
velum (VEL)). Thus, we use 14 dimensional raw EMA features for
representing articulatory space (i.e., X and Y co-ordinates of seven
EMA sensors), namely ULx, LLx, LIx, TTx, TBx, TDx, VELx,
ULy, LLy, LIy, TTy, TBy, TDy, VELy. The articulatory position
data have high frequency noise resulting from the EMA measure-
ment error. Also the mean position of the articulators changes
between utterances; hence, the position data needs pre-processing
before its use in analysis. Following the preprocessing steps outlined
in [4], we obtain parallel acoustic and articulatory data at a frame
rate of 100 observations per second. Acoustic feature MFCCs are
computed using 20 msec frame length with 10 msec shift [16]. Each
MFCC feature vector is 13 dimensional, where 13-th coefficient rep-
resents the log energy of the short-time frame. The first and second
derivatives of MFCCs are computed and appended to the MFCC
feature vector constructing a 39 dimensional acoustic feature vector.

3. SPARSE SMOOTHING FORMULATION

Let wn denote the acoustic feature vector at the n-th frame and
the corresponding articulatory feature vector be denoted by xn =
[x1n, · · · , xJn]T where xjn is the j-th articulatory feature and there
are a total of J articulatory features; T is the transpose operator. In
AAI, the articulatory features are estimated from the given acoustic
feature sequence wn, 1 ≤ n ≤ N of a sentence of lengthN frames.
We use the GMM for parameterizing the statistical mapping between
the acoustic and articulatory features. Estimated articulatory feature
vector x̂n is obtained using minimum mean squared error (MMSE)
criterion [1]. In a typical smoothing using low-pass filtering, the
smoothed j-th articulatory feature trajectory x̂j,sn is obtained by con-
volving the estimated articulator trajectory with a low-pass filter hjn
with cut-off frequency f jc specific to the j-th articulator:

x̂j,sn = x̂jn ? h
j
n (1)

where ? denotes the convolution operation. To avoid any phase dis-
tortion due to the low pass filtering on the estimated trajectories, the
filtering process is performed twice (“zero-phase filtering”) - the tra-
jectory is initially filtered and then time-reversed and filtered again
and time-reversed once more finally [17].

It is important to note that, after low-pass filtering, the n-th sam-
ple of the smoothed trajectory x̂j,sn is in general different from that
of the MMSE criterion based estimated x̂jn. Thus, although x̂jn is
optimal in MMSE sense, x̂j,sn is not. In sparse smoothing, we would
like to obtain a smoothed x̂j,ssn from x̂jn while preserving MMSE
optimality for as many samples as possible. In other words, the dif-
ference sequence between the smooth and estimated trajectories

djn = x̂j,ssn − x̂jn (2)

should have as few non-zero entries as possible, i.e., djn should be
a sparse sequence, subjected to a constraint that x̂j,ssn is smooth to
a required degree. For sparse smoothing, we propose the following
optimization problem (informal notation) for computing a sparse djn

min
d
j
n

‖djn‖1 subject to ‖gjn ? (x̂jn + djn)‖2 ≤ ε. (3)

The objective is the `1-norm of the difference sequence djn, whose
minimization ensures that djn is as sparse as possible. The constraint
term expresses that the energy of x̂j,ssn = x̂jn + djn, filtered with a
suitably chosen high-pass filter gjn, with cut-off frequency f jc (spe-
cific to j-th articulator), is bounded by ε. This constraint ensures that
after sparse smoothing, x̂j,ssn is smooth to the required degree.

Let us denote x̂j = [x̂j1, · · · , x̂
j
N ]T and dj = [dj1, · · · , d

j
N ]T

respectively. Due to the associativity of convolution and distributiv-
ity of time-reversal, it can be seen that zero-phase filtering with a
N length gjn is equivalent to a multiplication by the N ×N convo-
lution matrix Gj , constructed using the autocorrelation sequence of
gjn: [Gj ]kl =

∑
n g

j
n−kg

j
n−l. Thus the optimization problem can

be written in matrix-vector notation as follows:

min
dj
‖dj‖1 subject to ‖Gj(x̂j + dj)‖2 ≤ ε.

Letting yj = −Gjx̂j , the problem can be rewritten as

min
dj
‖dj‖1 subject to ‖Gj(dj)− yj‖2 ≤ ε. (4)

which is in the standard Basis Pursuit DeNoising (BPDN) [18] form
and related to LASSO [19]. A method for solving Eq. (4) is outlined
in the next section.

4. SOLUTION TO SPARSE SMOOTHING

To solve the optimization problem Eq. (4), we use a primal-dual
method called the Chambolle-Pock (CP) algorithm [20]. Though
a plenty of toolboxes such as SPGL1, CVX, etc. are available for
solving `1 minimization problems, the CP algorithm has the unique
advantage of being flexible, where in additional constraints can be
included very easily into the objective. Also, CP algorithm relies on
the proximal operator of the functions which are easy to evaluate.

4.1. Chambolle-Pock algorithm

Let K : RN → RM be a continuous linear operator with norm
|‖K‖| < ∞. Let F : RM → [0,+∞] and G : RN → [0,+∞] be
two proper, convex, lower-semicontinuous functions. The CP algo-
rithm, defined in Algorithm 1, is used to solve saddle-point problems
obtained from the primal problem Eq. (5):

min
u∈RN

F (Ku) +G(u). (5)

Algorithm 1: Chambolle-Pock

• Input: Choose τ, σ > 0, (u0,v0) ∈ RN × RM , θ ∈ [0, 1]
and ū0 = u0

• Iterate: For n ≥ 0, until stopping criterion

vn+1 = proxσF∗(v
n + σKūn)

un+1 = proxτG(un − τK∗vn+1)

ūn+1 = un+1 + θ(un+1 − un)

(6)

• Output: (un,vn)
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F ∗ and G∗ are the convex conjugates of F and G respectively
and K∗ is the adjoint of K. The proximal operator proxγf of a
proper, convex, lower semicontinuous function f , with a parameter
γ, is defined by

proxγf (u) := arg min
z∈RN

1

2γ
‖u− z‖22 + f(z). (7)

The closed form of Eq. (7) is easy to derive for several functions
commonly used in signal processing [21]. Further, the proximal op-
erator of the conjugate function f∗ is easily computed using the cel-
ebrated Moreau’s identity [20]:

z = proxγf (z) + γprox 1
γ
f∗

(
1

γ
z

)
. (8)

The closed forms of Eq. (7) for the specific functions in Eq. (4) is
discussed in Sec. 4.3. To ensure the convergence of the algorithm,
the parameters τ and σ have to be chosen such that τσ|‖K‖|2 < 1.
Details on convergence can be found in [20].

4.2. Unconstrained version of sparse smoothing problem

In order to express the sparse smoothing problem Eq. (4) in the un-
constrained form Eq. (5), we consider the indicator functions of the
convex sets defined by the constraints. The convex indicator function
ıC(·) on a convex set C is defined by

ıC(z) =

{
0 if z ∈ C,

+∞ otherwise . (9)

Let Bj =
{
z ∈ RN | ‖z − yj‖2 ≤ ε

}
be a convex norm ball.

By including the convex indicator function of the set Bj into the ob-
jective function the constrained problem is turned into the following
unconstrained problem, which can be solved using CP algorithm:

dj∗ := arg min
dj∈RN

(
‖dj‖1 + ıBj (d

j)
)
. (10)

The action of the matrix Gj on dj in the indicator function ıBj (·) is
implicit in the CP iterations. The sparsely smoothed j-th articulatory
feature trajectory is then given by xj,ss = x̂j,ss + dj∗.

4.3. Proximal operators of ‖u‖1 and ıB(u)

The proximal operator for the `1-norm is the simple componentwise
soft-thresholding operator, defined for a scalar u as:

proxγ‖·‖1(u) :=

{
0 if |u| ≤ γ,
(|u| − γ)sgn(u) otherwise. (11)

The proximal operator of the function ıBj (u) is the following
projection function onto convex set B:

proxıBj (u) := yj + (u− yj) min
(

1, ε/‖u− yj‖2
)
. (12)

5. EXPERIMENTAL EVALUATION

We experimentally evaluate the effectiveness of the proposed sparse
smoothing formulation by performing AAI followed by sparse
smoothing on the MOCHA corpus. We compare the inversion per-
formance obtained by sparse smoothing with that using low-pass
filtering. As our goal is to post-process the MMSE estimates, we
did not compare the sparse smoothing with other inversion criteria
[1, 4], which include smoothness directly in the inversion criterion.
The experimental details and results are described below.

5.1. Experimental setup

We perform AAI followed by sparse smoothing separately for the
male and the female subjects in the MOCHA corpus and compare the
smoothed trajectories obtained by sparse smoothing with the ones
obtained by low-pass filtering. The experiments are performed in
a 5-fold cross validation setup, where 80% of the data is used for
training, 5% is used as development set and remaining 15% is used
as test set. Following the work by Toda et al. [1], we have used 64
mixture GMM for learning the acoustic-articulatory map using the
training data. The development set is used to optimize the hyperpa-
rameters of the sparse smoothing optimization, i.e., f jc , σ, and ε. The
set of values {3, 4, 5, · · · , 24}Hz are chosen for f jc , {e-5, e-4, e-
3, 0.01, 0.1} for σ and {0.01, 0.1, 1, 10, 50, 100, 500, 1000} for
ε. The combination of hyperparameters which yields the best perfor-
mance on the development set is finally chosen and used for sparse
smoothing on the test set. Articulator specific high-pass filter gjn is
chosen as a 5-order Chebyshev type-II IIR filter (using cheby2()
in Matlab) with stop-band ripple 40 dB down compared to the pass-
band ripple [22].

We report the inversion performance as an average performance
over all sentences in the testsets of all folds. Root mean squared error
(RMSE) between the original and the estimated articulator trajecto-
ries of each sentence is used as a performance measure. The RMSE
reflects the average closeness between the original and the estimated
articulatory features. However, a minimum RMSE does not always
mean the trajectories are similar; for example, the estimated one can
be very jagged although it might be close to the actual one. Thus,
as an additional performance measure, we compute Pearson correla-
tion coefficient (PCC) [23] between the original and estimated fea-
ture trajectories of each sentence. Average RMSE and PCC over all
sentences are used to measure the quality of inversion.

In addition to comparing the inversion performances by using
sparse smoothing and low-pass filtering, we evaluate the effective-
ness of the sparse smoothing by computing the degree of sparsity of
the difference sequence djn between the sparsely smoothed trajectory
and the GMM based estimated trajectory (Eq. (2)). This is done by
counting the % number of zeros (NZ) in djn for every utterance. NZ
samples of the smoothed trajectory will be optimal in MMSE sense;
higher the NZ, more articulatory features in the sparsely smoothed
trajectory would be optimal as per the AAI criterion.
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Fig. 1. Illustrative examples of the sparse smoothing and smooth-
ing using low-pass filter for (a) female subject’s LLx and (b) male
subject’s TDx trajectories.
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Fig. 2. Comparison of low-pass filtering (smoothing) and sparse
smoothing - error bars indicate average inversion performance with
± one standard deviation.
5.2. Results and discussion

The hyperparameters f jc , σ, and ε are optimized on the development
set for each articulator separately. The optimized high-pass filter
cut-off frequencies for different articulators range from 3Hz to 5Hz.
This suggests that the frequency contents of the estimated trajecto-
ries above 3-5Hz are attenuated in the sparse smoothing optimization
resulting in smoothed articulator trajectories.

If the value of ε is too large, then the solution dj tends to be a
zero vector, which means that no smoothing occurs. When ε is too
small, then dj tends closer to −x̂j , thereby pushing the smoothed
articulator trajectories towards 0 (the maximally smooth trajectory).
The optimized values of ε balances these two factors to result in
the smoothed articulator trajectories with required degree of smooth-
ness. We observe that the optimized values of ε are typically higher
for VELx and LLy compared to other articulators.

Fig. 1 illustrates the smoothed trajectories using sparse smooth-
ing and low-pass filtering for LLx and TDx trajectories of female and
male subjects respectively. Fig. 1 also shows the respective original
and estimated trajectories using GMM based AAI. It is clear from
the figure that the sparsely smoothed trajectory is similar to the low-
pass filtered trajectory except that they are different at few places,
confirming that the sparsely smoothed trajectory preserves as many
samples of the estimated trajectory as possible. In Fig. 2, we com-
pare the inversion performances of AAI using smoothing (low-pass
filtering) and the proposed sparse smoothing using RMSE and PCC
for each of 14 articulators of both the male and female subjects. The
barplots demonstrate the RMSE (and PCC) values averaged over
all sentences in test set. Errorbars indicate ± 1 standard deviation
around the average measure. It is clear from Fig. 2 that in terms of
RMSE and PCC, the inversion performance of the two methods are
not significantly different. This is also true for both subjects of the
MOCHA database. Thus, sparse smoothing, formulated as an opti-
mization problem unlike low-pass filtering, preserves the inversion
performance obtained using low-pass filtering.

Although the inversion performances of typical low-pass filter
based smoothing and sparse smoothing are similar, sparse smooth-
ing, by its formulation, has a key property, unlike low-pass filtering,
that it preserves the optimality criterion of AAI at as many frames as
possible. To examine this, we report the degree of sparsity of the dif-
ference signal djn by reporting NZ for different articulators in Fig. 3
for both subjects in the MOCHA database. For the male subject the
NZ ranges from 6.5% (for VELy) to 23.5% (for LLy) with a mean
of 14.6% across all articulators. Similarly for the female subject the
NZ ranges from 9% (for JAWx) to 27.7% (for VELx) with a mean
of 14.9% across all articulators. Thus, on average∼15% of the sam-
ples in the sparsely smoothed articulator trajectories are identical
to the corresponding samples in the GMM based estimated trajec-
tories, which are optimal in MMSE sense. It is important to note

that in the case of low-pass filter based smoothing, no samples of the
smoothed trajectory are identical to those of the estimated trajectory;
thus, NZ for low-pass filter based smoothing is 0% for all articula-
tors. Therefore, sparse smoothing leads to a smoothed trajectory
which has similar AAI performance as that of the low-pass filtering,
but has a significantly higher percentage of samples (∼15%) with
AAI optimality as opposed to that (0%) for low-pass filtering.

The advantages of retaining MMSE optimal estimates after
smoothing remain to be evaluated in the context of an application
which uses AAI. However, sparse smoothing formulation trades this
requirement with the extent of smoothing through a single tuning
parameter, without a need to redesign the smoothing filter every
time.
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Fig. 3. The number of zeros (NZ) [in percent] (average ± one stan-
dard deviation) in the difference signal between the estimated and
smoothed articulator trajectories for all 14 articulators in the case
(a) male and (b) female subjects in MOCHA corpus.

6. CONCLUSIONS

We propose a sparse smoothing formulation which is used as a
post-processing step to the estimated articulator trajectories from
GMM based AAI to obtain smooth articulator trajectories. The key
property of the proposed sparse smoothing is that it constrains the
smoothed trajectory samples to be identical to the samples of the es-
timated trajectory at as many frames as possible, thereby preserving
the optimality of AAI criterion for these samples unlike in a typical
smoothing using low-pass filtering.

The proposed formulation sparsely smooths each articulator tra-
jectory separately. Thus a subset of the smoothed articulatory fea-
ture vector could be optimal as per AAI criterion in certain frames
while the rest of the articulatory features at those frames may not
remain optimal. An alternate sparse smoothing optimization could
be formulated where all the articulatory features can be jointly (e.g.,
total variation) considered such that following sparse smoothing all
articulatory features at a frame remain optimal as per the AAI cri-
terion. It is worth noting that the proposed sparse smoothing, being
a post-processing step, is applicable beyond GMM based AAI. This
could be used as the post processing step to the articulatory estimates
from the AAI using any other inversion criterion so that the respec-
tive AAI criterion optimality is preserved for as many samples in the
smoothed trajectory as possible. Phonetic constraints could also be
incorporated in the sparse smoothing framework. Further, we could
also envisage to integrate the sparse smoothing step in the AA inver-
sion step itself.

3059



7. REFERENCES

[1] T. Toda, A. Black, and K. Tokuda, “Statistical mapping be-
tween articulatory movements and acoustic spectrum using a
gaussian mixture model,” Speech Communication, vol. 50, pp.
215–217, 2008.

[2] K. Richmond, “A trajectory mixture density network for the
acoustic-articulatory inversion mapping,” Proc. ICSLP, Pitts-
burgh,USA, pp. 577–580, September 2006.

[3] L.Zhang, “Acoustic-articulatory modeling with the trajectory
hmm,” IEEE Signal Processing Letters, vol. 15, pp. 245–248,
2008.

[4] P. K. Ghosh and S. S. Narayanan, “A generalized smoothness
criterion for acoustic-to-articulatory inversion,” J. Acoust. Soc.
Am., vol. 128, no. 4, pp. 2162–2172, 2010.

[5] S. Ouni and Y. Laprie, “Modeling the articulatory space using
a hypercube codebook for acoustic-to-articulatory inversion,”
J. Acoust. Soc. Am., vol. 118, no. 1, pp. 444–460, 2005.

[6] S. King and P. Taylor, “Detection of phonological features in
continuous speech using neural networks,” Computer. Speech
Lang., vol. 14, pp. 333–345, 2000.

[7] A. Toutios and K. Margaritis, “A rough guide to the acoustic-
to-articulatory inversion of speech,” Proceedings of the 6th
Hellenic European Conference on Computer Mathematics and
its Applications (HERCMA-2003), pp. 746–753, September
2003.

[8] P. K. Ghosh and S. S. Narayanan, “On smoothing articula-
tory trajectories obtained from gaussian mixture model based
acoustic-to-articulatory inversion,” J. Acoust. Soc. Am. Ex-
press Letters (JASAEL), vol. 134, no. 2, pp. EL258–EL264,
July 2013.

[9] A. A. Wrench and K. Richmond, “Continuous speech recogni-
tion using articulatory data,” Proc. ICSLP, Beijing, China, pp.
145–148, 2000.

[10] J. Frankel, K. Richmond, S. King, and P. Taylor, “An automatic
speech recognition system using neural networks and linear dy-
namic models to recover and model articulatory traces,” Proc.
ICSLP, Beijing, China, vol. 4, pp. 254–257, October 2000.

[11] G. Ramsay and L. Deng, “Maximum-likelihood estimation for
articulatory speech recognition using a stochastic target mode,”
Proc. EUROSPEECH, pp. 1401–1404, 1995.

[12] T. Stephenson, H. Bourlard, S. Bengio, and A. C. Morris, “Au-
tomatic speech recognition using dynamic bayesian networks
with both acoustic and articulatory variables,” Proc. ICSLP,
pp. 951–954, 2000.

[13] S. Maeda, “Compensatory articulation during speech: Evi-
dence from the analysis and synthesis of vocal tract shapes
using an articulatory model,” Speech production and speech
modelling, edited by W. Hardcastle and A. Marchal (Kluwer
Academic Publishers, Dordrecht, The Netherlands), pp. 131–
149, 1990.

[14] M. M. Sondhi, “Articulatory modeling: a possible role in con-
catenative text-to-speech synthesis,” IEEE 2002 Workshop on
Speech Synthesis, Santa Monica, USA, pp. 73–78, September
2002.

[15] A. A. Wrench and H. J. William, “A multichannel articula-
tory database and its application for automatic speech recogni-
tion,” 5th Seminar on Speech Production: Models and Data,
Bavaria, pp. 305–308, 2000.

[16] S. J. Young, “The HTK hidden markov model toolkit: Design
and philosophy,” Entropic Cambridge Research Laboratory,
Ltd, vol. 2, pp. 2–44, 1994.

[17] Richard G. Lyons, Understanding Digital Signal Processing,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1st edition, 1996.

[18] M. Fornasier, “Numerical methods for sparse recovery,” Theo-
retical Foundations and Numerical Methods for Sparse Recov-
ery, Radon Series Comp. Appl. Math. deGruyter, 2010.

[19] M. Schmidt, Least squares optimization with L1-norm regular-
ization, Project Report, University of British Columbia, 2005.

[20] A. Chambolle and T. Pock, “A first-order primal-dual algo-
rithm for convex problems with applications to imaging,” Jour-
nal of Mathematical Imaging and Vision, vol. 40, no. 1, pp.
120–145, May 2011.

[21] P L Combettes and J-C Pesquet, “Proximal splitting meth-
ods in signal processing,” Fixed-Point Algorithms for Inverse
Problems in Science and Engineering, Jan. 2011.

[22] A. Antoniou, Digital Filters: Analysis, Design & Applications,
McGraw-Hill Education (India) Pvt Limited, 2001.

[23] J. L. Rodgers and W. A. Nicewander, “Thirteen ways to look
at the correlation coefficient,” The American Statistician, vol.
42, no. 1, pp. 59–66, 1988.

3060


