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ABSTRACT

The data sparsity problem of context-dependent (CD) acoustic mod-
elling of deep neural networks (DNNs) in speech recognition is ad-
dressed by using the decision tree state clusters as the training tar-
gets. The CD states within a cluster cannot be distinguished during
decoding. This problem, referred to as the clustering problem, is not
explicitly addressed in the current literature. In our previous work, a
regression-based CD-DNN framework was proposed to address both
the data sparsity and the clustering problems. This paper investigates
several refinements for the regression-based CD-DNN including two
more representative state approximation schemes and the incorpora-
tion of sequential learning. The two approximations are obtained
based on the statistics learned from the training data. Sequential
learning is applied to both broad phone DNN detectors and the re-
gression NN. The proposed refinements are evaluated on a broad-
cast news transcription task. For the cross-entropy systems, the two
approximations perform consistently better than our previous work.
Consistent performance gain over the corresponding cross-entropy
trained systems is also observed for both the baseline CD-DNN and
the regression model with sequential learning.

Index Terms— Context Dependent Modelling, Deep Neural
Network, Logistic Regression, Canonical State Modelling, Articula-
tory Features, Sequential Learning

1. INTRODUCTION

Context-dependent (CD) acoustic modelling in automatic speech
recognition (ASR) raises an important issue of how to reliably han-
dle the large number of CD phones that grows exponentially with
the width of the context. In addition, a considerable number of
them have limited number of occurrences or even unseen in the
training corpus. To address this data sparsity problem, parameter
sharing [1, 2, 3] is used. However, this leads to the clustering prob-
lem where the CD states that share the same parameters will yield
the same acoustic scores given the observations.

Over the past few years, the development of machine learning
algorithms [4] and General-purpose computing on graphics process-
ing units have made possible the training of Deep Neural Networks
(DNNs). To handle the data sparsity problem, decision tree state
clusters [1, 3] are often used as CD-DNN training targets [5, 6, 7, 8].
However, the clustering problem is not explicitly addressed.

In our previous work [9], a regression-based CD-DNN mod-
elling approach was proposed. Multiple sets of state clusters are
used to represent the canonical states. Each set divides all the CD
states into simpler disjoint clusters, which are easier to model, cir-
cumventing the data sparsity problem. These clusters are obtained
based on the broad phone contexts defined according to the articu-
latory features. DNNs are used to obtain the posterior probabilities
of the broad phone state clusters. The concatenated log posteriors

of the DNN detectors form the canonical state space. Logistic re-
gression is then used to transform the canonical states into the final
state output probabilities. However, directly training the logistic re-
gression model is difficult due to the large number of distinct CD
states, many of which have very limited training data. To address
this data sparsity problem, regression parameter tying is performed.
Based on some approximations, the regression model can be viewed
as a sparse two-layer neural network with dynamically connected
weights and its parameters can be trained with the cross-entropy cri-
terion. More interestingly, by carefully designing the broad phone
state clusters such that each CD state can be uniquely identified us-
ing the canonical state representation, the resulting regression-based
CD-DNN is able to model each CD state distinctly, yielding a bet-
ter context resolution compared to the conventional state clustering
approach.

The frame-based cross-entropy criterion is not optimum for
sequential classification tasks like speech recognition. Therefore,
lattice-based sequential learning of NN/HMM systems was pro-
posed in [10]. It has been shown that (D)NNs with sequential
learning perform significantly better than the corresponding cross-
entropy systems [11, 12, 13].

In this paper, two refinements are investigated for the regression-
based CD-DNN framework [9]. Firstly, the intuition-based approx-
imation in [9] does not aim at optimising the objective function di-
rectly, which is not desirable. Therefore, two more representative
state approximations are proposed based on the statistics learned
from the training data. Secondly, sequential learning is applied to
estimate the regression-based CD-DNN parameters.

The remainder of the paper is organised as follows. Section 2
reviews the regression-based CD-DNN framework. Section 3 intro-
duces two approximations to the objective function so that the train-
ing procedure is computationally tractable. The incorporation of se-
quential learning for the regression NN is given in Section 4. Exper-
imental results are presented in Section 5. Section 6 summarises the
findings and concludes the paper.

2. REGRESSION-BASED CD-DNN OVERVIEW

To address the clustering problem of the CD-DNNs, an initial in-
vestigation was proposed in our previous work [9] by introducing
a regression-based CD model for DNNs. Given some regression
bases, each CD state can be uniquely defined. There are three main
components of the regression-based CD-DNN: 1) canonical state
vector generation 2) context dependent state vector mapping 3)
multi-class logistic regression. We will give a brief review of these
components here. The detailed description can be found in [9].

The canonical state vector b̄t is the concatenated log posteriors
of all the DNN detectors given an input feature vector, ot. DNN
detectors are used here to predict biphone clusters using different
categories of broad phone contexts in table 1.
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Front Vowel iy ih eh ae
aw ey y

High Vowel ih iy uh uw

Voiced

iy ih eh
ey ae aa
aw ay ah
ao oy ow

uh uw er b
d dh g jh

l m n ng r v
w y z zh

Short Vowel eh ih uh ae
ah y oy

Mid Vowel ah eh ey
ow erCentral Vowel ah er hh Long Vowel iy uw aa

Back Vowel aa ao uh uw
ay ow oy Low Vowel aa ae aw

ay oy ao
Diphthong ey aw ow ao

ay ay

Coronal d l n s t
z r th dh Fricative jh ch s sh z f

zh th v dh hh
Retroflex er r
Affricate ch jh

Palatal sh zh jh ch Nasal m n ng Alveolar s z t d n l

Labial b f m
p v w Stop Cons b p t

d k g Unvoiced
p f th
t s sh

ch k hh

Continuent sh th dh  hh m
f ng v w zh

Velar g k ng Approximant w y l r NonContinuent p b g k
Silence sil Silence sil Silence sil Silence sil

Place of articulation Production manner Voicedness Miscellaneous

Table 1. Broad phone classes based on place of articulatory (A), production manner (M), voicedness (V) and miscellaneous (O)

For each CD state, s, a state descriptor Ds (see [9]) is used to
map the high dimensional canonical state vector b̄t to a low dimen-
sional CD state vector, V (s, t)[i] = log bt,i[Ds[i]], where [i] indi-
cates the ith vector element. Ds is an N -dimensional vector whose
elements are the state cluster indices for each DNN detector. The de-
sign principle of the broad phone classes is to assign each CD state s
to a unique descriptor Ds that is composed of simpler biphones clus-
ters. Given a triphone state s, the N biphone clusters are obtained
by mapping its left and right contexts to the broad phone groups de-
fined in Table 1. The corresponding indices for the biphone clusters
are held in its descriptor Ds.

Finally, V (s, t) is transformed into the state output probabili-
ties, P (s|ot), by means of logistic regression:

P (s|ot) =
exp

(
wT

c(s) · V (s, t)
)

∑
s′∈S exp

(
wT

c(s′) · V (s′, t)
) (1)

To address the data sparsity issue, all the triphone states within
the same state cluster share the same regression weight wc, where
c(s) ∈ C is the triphone state cluster for state s. Although wc are
shared within a cluster, the V (s, t) term will result in a different
state output probability since Ds is unique for each state. Since the
denominator of equation 1 is independent of s, it is just a constant
bias which can be ignored during decoding. Therefore, the log
probability of each state can be easily computed:

logP (s|ot) ∝ wT
c(s) · V (s, t) (2)

3. REGRESSION PARAMETER ESTIMATION

Cross-entropy criterion was used in [9] as the objective function
to optimise the regression parameters. The cross-entropy between
the target state label vector, yt(s) and the state output probabilities
P (s|ot) predicted by the model is:

FXENT = −
T∑
t

∑
s∈S

yt(s) logP (s|ot) = −
T∑
t

logP (st|ot)

where in the case of hard target labels yt(s) = 1 if s = st and
yt(s) = 0 otherwise. st is the correct state label at time t. Substitut-
ing equation 1 into the above objective function yields:

FXENT = −
T∑
t

{
wT

c(s) · V (s, t)− logQst

}
(3)

Qst
=

∑
s′∈S

exp
(
wT

c(s′) · V (s′, t)
)

(4)

S denotes a set of all the triphone states. It is not feasible to di-
rectly optimise FXENT because it will be computationally intractable
to compute the summation over all the states for every time frame ot

in Qst
. Therefore, instead of computing V (s, t) for all the states,

we compute only one state, sc, for each state cluster c. The rest of
the states in that cluster will use the CD state vector of sc when com-
puting the objective function. sc can be viewed as a representative
state for cluster c. Therefore, the new objective function, F ′

XENT can
be obtained by replacing Qst with Q′

st :

F ′
XENT = −

T∑
t

{
wT

c(s) · V (s, t)− logQ′
st

}
(5)

Q′
st

=
∑
c∈C

Nc exp
(
wT

c · V (sc, t)
)

(6)

where sc is the representative state of cluster c. C is the set of state
clusters and Nc is the number of states in cluster c. We further con-
strain that V (st, t) for the reference state st is computed directly and
will not use the representative state approximation. In [9], we pro-
posed to choose the triphone state with the largest number of train-
ing frames to represent the state cluster. However, the approximation
may not necessarily yield the representative states that are optimum
for FXENT. In the following, two approximation methods that deter-
mine the representative states based on the statistics from the training
data will be described.

3.1. Frame-varying approximation

In order to achieve a better approximation, the frame-varying ap-
proximation method aims at finding the representative states so that
minimising F ′

XENT will result in a decrease in FXENT. This can be
achieved by finding the frame-dependent cluster state representa-
tives, sc(t), such that F ′

XENT ≥ FXENT or Q′
st
≥ Qst

. This requires
sc(t) satisfy the following constraints:

wT
c · V (sc(t), t) ≥ wT

c · V (s′, t), ∀t, s′ ∈ c (7)

In order to satisfy all the above constraints, equation 7 has to be
evaluated for every ot and triphone states of cluster c or upon every
update of the regression weights, wc, rendering it computationally
intractable. To reduce the complexity, instead of evaluating 7 for
each member triphone state of cluster c, we can choose a subset of c
as the candidates to get the representative state:

wT
c · V (sc(t), t) ≥ wT

c · V (s′, t), ∀t, s′ ∈ ψc (8)
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where ψc is a subset of triphone states of cluster c. In addition, ψc

is assumed to be static (frame independent), which can be obtained
before training the regression model. The representative state for
cluster c at time t can then be obtained as:

sc(t) = arg max
s′

wT
c · V (s′, t) ∀s′ ∈ ψc (9)

It is interesting to note that the state representative is changing per
observation ot. Therefore, we referred to the approximation in
equation 9 as “frame-varying” approximation. However, even with
the approximation, the computational complexity is still quite high
for a large number of regression targets since we have to compute
equation 8 and 9 for each regression target given each ot. Conse-
quently, we investigate the frame-varying approximation using only
the monophone state regression targets.

Now how to get the subset/candidate triphone states ψc for each
regression target (monophone state)? In this paper, we propose to
use decision tree state clusters to define the candidate sets. Assume
we can find a representative triphone state for each decision tree state
cluster. Given a CI regression target, all the representative states of
the corresponding decision tree state clusters are used as the candi-
date states for the frame-varying approximation. For example, to get
the representative candidate set for target “/iy/[2]”, ψ/iy/[2], we col-
lect all the decision tree state clusters of “/iy/[2]” and get the corre-
sponding representative states of these clusters. Given each training
frame, the representative state for “/iy/[2]” is assumed to be one of
these representative states (equation 9).

3.2. Frame-independent approximation

The only remaining problem is how to get the representative state for
each decision tree state cluster, which requires another approxima-
tion. To this end, we constrain the representative states of the state
clusters to be static (frame independent) so that it can be obtained
once and reused in subsequent optimisation iterations. Therefore,
the approximation is referred to as “frame-independent”. Further-
more, by constraining wc to be positive, a new set of constraints
independent of wc can be obtained as follows:

V (sc, t)[i] ≥ V (s′, t)[i], ∀t, i ∈ [1..N ], s′ ∈ c (10)

However, it may not be possible to find a static sc, that can satisfy
all the constraints in equation 10. Therefore, we propose finding the
representative states that will satisfy most of the constraints:

sc = arg max
s′∈c

Ts′ (11)

where Ts′ denotes the number of times s′ has the largest value of
V (s′, t)[i] among all states in c(s′), which is calculated as follows:

Ts′ =

N∑
i=1

φc(s′),i[Ds′ [i]] (12)

φc,i[j] =

T∑
t=1

δ
(
j − Ici,t

)
(13)

≈
T∑

t=1,c=c(st)

δ
(
j − Ici,t

)
(14)

Ici,t = Dŝci,t
[i] (15)

ŝci,t = arg max
s′∈c

V (s′, t)[i] (16)

where, among all the state members of c, φc,i[j] is the number of
times the jth output of the ith detector has the largest value; Ici,t
denotes the index of the ith detector’s output with the largest value
at time t; the CD state which has the largest i-th element of V (s, t) is
ŝci,t. δ(·) is a Kronecker delta function. To reduce the computational
complexity, each cluster, c, will only consider the training frames
whose reference states (st) belong to c , which is the approximation
in equation 14. Interestingly, the approximation in equation 11 can
be viewed as a special case of the frame-varying approximation if
ψc contains only one representative state.

4. SEQUENTIAL LEARNING OF REGRESSION NN

In [9], F ′
XENT is trained with a 2-layer sparsely-connected regression

NN by viewing ws as weights and using the representative states as
regression targets. As another refinement, we can apply sequential
training [10] to the regression NN. In this paper, Minimum Phone
Error (MPE) [14] criterion is used. Optimising the MPE criterion
directly is difficult for the regression NN. Therefore, we aim at opti-
mising the weak sense auxiliary function GMPE [14]:

GMPE =

S∑
s=1

T∑
t=1

γMPE
t (s) logP (s|ot) (17)

where γMPE
t (s) is a “posterior” term defined in [14], which is com-

puted as the differences between the average accuracies of all lattices
passing state s at time t and the average accuracy of all the states at
time t. Substituting equation 1 into the auxiliary function and apply-
ing weight sharing, we have

GMPE =
∑
c∈C

T∑
t=1

γMPE
t (s)

(
wT

s · V (s, t)− logQ′
st

)
where Q′

st
is defined in equation 6. The gradient of GMPE with re-

spect to at(s) is also γMPE
t (s). Recall we do not use state cluster rep-

resentative for the reference triphone state where γMPE
t (s) is (mostly)

positive. On the other hand, the occupancy is negative for the com-
peting states. To maximise GMPE, we need to maximise Q′

st
which

is the same as the cross-entropy training criterion. Therefore, all the
approximations proposed in the last section can be used here natu-
rally to optimise the weak sense auxiliary function. The sequential
learning is incorporated by using the lattice-based gradient γMPE

t (s)
in the EBP of the training of the regression NN.

5. EXPERIMENTAL RESULTS
5.1. Experimental Setup and Baseline Systems

We evaluate the proposed refinements for the regression-based CD-
DNN on a broadcasting news transcription task using the Topic De-
tection and Tracking - Phase 3 (TDT3) corpus [15] with 100 hours of
English speech. The phone set contains 40 phones including silence.
Each phone HMM is modelled with 5 states including 3 emitting
states. The features are the standard 39-dimensional PLPs. Each
triphone state in the baseline GMM/HMM is modelled with 20 com-
ponents. The testing set is the F0 portion of the Hub4-97 evaluation
set. The language model is trained using the Gigaword English cor-
pus and the TDT3 transcriptions with a 58K vocabulary list. The
word error rate is obtained from a bigram full decoding and a tri-
gram lattice rescoring.

DNN is trained using TNet [16]. Up to 5 hidden layers with 2048
hidden units per layer are trained. The training labels are obtained
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Table 2. Output dimensions and trigram WERs of DNN Detectors
Detector Type Output Dimension XENT MPE

A(L)-S 939 15.5 11.7
S+A(R) 15.9 11.0
M(L)-S 939 15.7 11.6
S+M(R) 16.4 12.0
V(L)-S 354 15.9 11.6
S+V(R) 16.6 11.8
O(L)-S 1173 15.0 11.5
S+O(R) 15.9 11.2

from the forced alignments using the corresponding GMM/HMMs.
The input window size of the DNN input layer is 15 frames, render-
ing 585 input units. The hybrid DNN/HMM system is set up using
Kaldi [17]. The trigram WER for CI DNN is 16.0% while the best
CD-DNN with 2303 state clusters has a trigram WER of 14.8%.

The input of the 2-layer regression NN b̄t is the concatenation of
all the log posteriors from the 8 broad phone DNNs with a dimension
of 6810. The WER of the 8 broad phone DNNs under both cross-
entropy and MPE training is given in table 2. All 8 cross-entropy
trained broad phone DNN detectors perform worse than the baseline
CD-DNN with 2303 state clusters. This is expected since they have
a significantly smaller number of clusters and consider only one side
of the triphone context. The incorporation of MPE training provides
significant performance gain over the cross-entropy systems. How-
ever, these MPE DNN detectors still perform significantly worse
than the MPE CD-DNN baseline with a trigram WER of 10.6%.

5.2. Refinements for regression-based CD-DNN

The cluster representative is approximated with the triphone state
with the largest number of training examples in [9]. This approxi-
mation is referred to state frequency (SF) based approximation . The
frame-independent (FI) and frame-varying (FV) approximations are
the proposed two refinements. Recall a candidate representative state
set is required for the frame-varying approximation. Therefore, we
choose a decision tree with 2303 state clusters to define the candi-
date set. To do this, we obtain a representative for each of the 2303
clusters according to the frame-independent approximation in equa-
tion 11. The representative states are then used as the state candi-
dates for the frame-varying approximation with CI state regression
targets. We refer to the canonical state space produced by the cross-
entropy trained DNN detectors as “XENT canonical space” and the
one produced by MPE trained DNN detectors as “MPE canonical
space”. Based on the XENT canonical space, the regression NN
is only trained with cross-entropy criterion for all three approxima-
tions. For the MPE canonical space, both cross-entropy and MPE
criteria are used. Note for the MPE regression model, 4 iterations of
MPE training are performed based on the best cross-entropy system.
The trigram WERs of these configurations are given in table 3, where
all the regression NNs have only CI states as regression targets.

For the XENT canonical state space, both the frame-independent
and frame-varying approximations outperform the state frequency
approximation in [9]. The frame-independent approximation per-
forms better than the frame-varying approximation. For the MPE
canonical space, even with the cross-entropy trained regression NNs,
significant improvements are obtained for all the approximations.
This shows the advantages of the MPE canonical space over the
XENT space. In addition, consistent performance gain has also been
observed for all the approximations with MPE trained regression NN
compared to the corresponding cross-entropy systems. The state fre-

Table 3. WER comparison of different representative state approxi-
mation methods

Training criterion WER
Detectors Regression NN SF FI FV

XENT XENT 12.7 11.7 12.0

MPE XENT 10.5 10.6 10.3
MPE 10.4 10.5 9.8

quency based approximation has the comparable performance to the
frame-varying approximation. Interestingly, the best performance of
the regression model on the MPE canonical space is obtained with
frame-varying approximation for both the XENT and MPE trained
regression NN instead of the frame-independent approximation.

To explain this, we need to investigate how the approximations
are used for both cross-entropy and MPE criteria. Cross-entropy
is a frame-based learning criterion, where the objective function is
optimised per frame and each frame is independent of each other.
Recall the frame-independent approximation is obtained to opti-
mise the cross-entropy criterion directly in equation 11. On the
other hand, the frame-varying approximation relies on the frame-
independent approximations to indirectly optimise the cross-entropy
objective function. Therefore, the frame-independent approximation
may be more suitable for the cross-entropy criterion and the XENT
canonical state space. For the MPE canonical state space, the frame-
independent approximation deviates more with the MPE criterion
since MPE is a sequential criterion which explores the relations
among frames. However, for frame-varying approximation, as it has
the flexibility of approximating a representative state for each frame,
the mismatch between the cross-entropy criterion which is used to
obtain the approximations and the MPE criterion can be reduced
by dynamically choosing the representative state for each frame.
Therefore, it may be more consistent with the MPE canonical space
thus has consistently better performance than frame-independent
approximation. In addition, the best performance (9.8%) is signifi-
cantly better than the baseline MPE trained CD-DNN (10.6%) with
a p-value of 0.001 reported using SCTK [18].

6. CONCLUSION

In this paper, several refinements were applied to the previously pro-
posed regression-based CD-DNN framework, including two repre-
sentative state approximations as well as the incorporation of se-
quential learning. The proper approximation of the upper bound for
the objective function is essential for the success of the regression
model. Two approximations were investigated based on the statis-
tics learned from the training data including a frame-independent ap-
proximation and a frame-varying approximation. The incorporation
of the sequential learning of the regression NN was also studied un-
der both approximations. The refinements are evaluated on a broad-
cast news transcription task. The two new approximations perform
consistently better than the one in our previous work. Significant
performance gain is observed using the MPE criterion for both base-
line CD-DNN and the regression-based CD-DNN. The best MPE
trained regression-based CD-DNN with the frame-varying approxi-
mation performs significantly better than the MPE trained baseline
CD-DNN.
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