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Abstract—Capacitive sensing technology is ubiquitous in to-
day’s electronic devices. This paper proposes a novel architecture
for the design of an ultra low power self-capacitive touch sensing
analog front end (AFE) by exploiting the sparsity of simultaneous
touches with respect to the number of sensor nodes. It is possible
to significantly reduce the complexity and the power consumption
of the AFE by migrating the computational burden to the digital
processor which usually have surplus computational power. Based
on the 1-bit compressive sensing theory, the ADC(s) in the
AFE can be replaced by a single comparator. The number of
measurements required in order to resolve the touch positions
is related to the number of simultaneous touches rather than
the number of sensor nodes. Detailed AFE architecture and the
capacitance measurement process will be presented along with a
corresponding digital reconstruction algorithm run by the digital
processor.

Index Terms—1-bit compressive sensing, capacitive touch
screen, binary iterative hard thresholding

I. INTRODUCTION

The capacitive sensing technology [1] has been existing

for decades. However, it is the launch of iPhone in 2007

that initiated a wave of explosive deployment of the capac-

itive sensing technology. Today’s smart phones are almost

unanimously equipped with a capacitive touch screen. There

is an increasing demand for capacitive touch screens with

larger sizes and quicker responses which implies a higher

complexity and power consumption in the analog front end

design. However, the number of simultaneous touches sup-

ported remains relatively unchanged at the same time. For

example, for a capacitive touch keyboard, no more than three

key combinations are expected to be entered at the same time.

For a phone size screen, one can hardly fit 4 fingers on it. In

another word, the ratio between the active touches with regard

to the total number of touch sensors is small. The theory

of Compressive Sensing (CS) [2] comes into the picture by

claiming that the number of measurements required to resolve

such kind of sparse signal is approximately proportional to

the sparsity of the signal. Reference [3], [4] were among the

first few papers that applied the CS concept on capacitive

touch screens to exploit the sparsity of simultaneous touches.

However, in most cases we are only interested in the locations

of the touches rather than its magnitude. Therefore, a precise

recovery of the capacitance magnitude is not necessary, which

leads to a further simplification of the AFE design. The 1-bit

compressive sensing theory [5] fits perfectly into this scenario.

This paper proposes a novel architecture for the design of an

ultra low power self-capacitive touch sensing AFE based on

the concept of 1-bit compressive sensing.

This paper is organized as follows. Section 2 describes

a capacitance sensing technique using the charge transfer

principle which is adopted in section 3 for the design of a

self-capacitance sparse touch sensing AFE. Section 4 presents

a reconstruction algorithm run by the digital processor to

resolve the touch locations. The performance of the proposed

algorithm is justified by two Monte Carlo simulations.

II. SELF-CAPACITANCE SENSING PRINCIPLE AND CIRCUIT

In electrical circuits, the term capacitance usually refers to

the mutual capacitance between two adjacent conductors, such

as the two parallel plates of a capacitor. There also exists

a property called self capacitance, which is the amount of

electrical charge injected onto an isolated conductor to raise

its electrical potential by one volt. Theoretically, the reference

point for this potential is a hollow conducting sphere of infinite

radius, centered on the conductor. In practice, since the earth

is a very large conductor and hence is considered to be at

zero potential with regard to an isolated conductor, the other

plate is considered to be the earth. In a self capacitance

touch screen [6], the electrodes can be patterned on a single

layer or two layers. Each electrode represents a unique touch

coordinate and is connected individually to a controller. As

shown in Fig. 1, when a finger or a conductive stylus is close

to the electrode, the human body capacitance ΔC is added

in parallel with the parasitic or background capacitance C̄ of

the electrode. A touch is located by sensing the small change

in capacitance at that electrode. When the electrodes are laid

over two layers, they can be arranged in a layer of columns

and a layer of rows such that the (X,Y ) coordinate of a touch

is determined separately for the row and column.

C

C

Figure 1. The capacitance change in the presence of a finger.

An accurate and fast capacitance sensing technique lies at

the heart of a capacitive touch screen. Also known as “QT”
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sensors, charge transfer capacitance sensors [7] are extremely

sensitive and are able to reach a differential resolution of sub-

femto (10−15) farads. Figure 2 shows the basic principle of a

charge transfer sensing process.
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Figure 2. Basic principle of a charge transfer capacitance sensor

In the pre-charge stage, the unknown capacitor C is charged

by a DC voltage source V so that in steady state, the charge

accumulated over C is

Q = V C (1)

In the transfer stage, a known reference capacitor Cref is

connected in parallel with C such that the charge on C is

transferred onto Cref. Denoting the potential over Cref as Vs,

according to the conservation of total charge, we have

V C = Vs(C + Cref) (2)

which can be rearranged as

Vs =
C

C + Cref

V. (3)

If Cref � C, we have

Vs ≈ C

Cref

V =
1

Cref

Q (4)

which enables us to estimate the capacitance using a propor-

tional relationship between the drive and sense voltages. Figure

3 shows a practical circuit of a QT sensor. A resistor Rref is

connected in parallel with Cref to reset Cref before the next

measurement. Switch P is closed during the pre-charge stage,

while switch M is open. During the measurement stage, M is

closed and P is open. We have

Vs(t) = −V
C

Cref

e−
t
τ , (5)

where τ = RrefCref. At the measurement instant t = t0 � τ ,

Vs(t0) ≈ −V
C

Cref

= − 1

Cref

Q, (6)

which is exactly the same voltage as in (4) except for a polarity

reversal.

III. THE PROPOSED SELF-CAPACITANCE SENSING AFE

ARCHITECTURE

A. Model Setup

Figure 4 shows a block diagram of the proposed self-

capacitance sensing AFE architecture. Suppose there are N
capacitance sensor nodes, each of which connects to a MUX.

The capacitance at the n-th (n = 0, ..., N − 1) sensor is

Cn = Cb
n +ΔCn (7)
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Figure 3. A practical circuit for a charge transfer sensor
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Figure 4. Block diagram of the proposed self-capacitance sensing AFE
architecture

where Cb
n is the background capacitance and ΔCn is the

capacitance change introduced by a touch object.

Suppose we will take M measurements. For the m-th (m =
0, ...,M−1) measurement, in the pre-charge stage, a Bernoulli

random number generator (RNG) will generate a vector of {0,

1} values to control the switch pair P and G to charge each

capacitance sensor or not, where “0” indicates that switch P is

open and G is closed while “1” indicates that P is closed and

G is open. We can denote the charging voltage on capacitance

sensor n as V m
n .

In the sensing stage, all switch P’s and G’s are open and

M’s are closed so that all the charge on the capacitance sensor

will be transferred to the capacitance measurement circuit as

described in Fig. 3. The output of the circuit is

V m
s ≈ − 1

Cref

Q =
−1

Cref

N−1∑
n=0

CnV
m
n . (8)

The sensed voltage is then passed into a comparator with a

calibration voltage V m
c , where

V m
c =

−1

Cref

N−1∑
n=0

Cb
nV

m
n (9)

Since the background capacitance Cb
n can be measured offline,

we have an exact knowledge of V m
c . The final binary output

of the AFE passed to the digital processor is

ym = sgn(V m
s − V m

c ), (10)
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when combined with (7), (8), (9), we have

ym = sgn(
−1

Cref

N−1∑
n=0

ΔCnV
m
n ), (11)
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Figure 5. The self-capacitance measurement process with the proposed AFE
architecture.

Figure 5 shows a pre-charge, measurement, and reconstruc-

tion process. After accumulating M measurements, a recon-

struction algorithm will be executed to resolve the positions

of the active touches. Denote the capacitance variation vector

as

Δc =
[
ΔC0 · · · ΔCN−1

]T
. (12)

Denote the binary output vector of the AFE as

Δy =
[
y0 · · · yM−1

]T
. (13)

Denote the Bernoulli distributed pre-charge matrix as

Φ =
−1

Cref

⎡
⎢⎣

V 0
0 · · · V 0

N−1
...

. . .
...

V M−1
0 · · · V M−1

N−1

⎤
⎥⎦ . (14)

In matrix form, (11) can be written as

y = sgn(ΦΔc) (15)

The remaining question is how do we resolve the position of

the non-zero entries in Δc from y.

B. Reconstruction Algorithm

The data acquisition model in (15) was first introduced in [5]

in 2008. In our proposed model, Δc is a sparse vector with

only K (K � N ) non-zero values according to the sparse

simultaneous touch assumption. The reconstruction of Δc can

be formulated as

min ‖x‖1 s.t. y = sgn(Φx) (16)

Note that if x̂ is an optimal solution in (16), then any positive

scaling of x̂ is also an optimal solution. In another word,

we cannot reconstruct the magnitude of the signal with the

sensing model. However, in our touch sensing model, the exact

magnitude of Δc is not important. We are only interested

in the non-zero positions in Δc which correspond to the

touch locations. Therefore, we can add an additional constraint

‖x‖2 = 1 to make (16) yield a unique solution and locate the

non-zero positions in the optimal solution x̂. To get rid of the

non-linear operator sgn, we can define a diagonal matrix

Y = diag(y). (17)

(16) can be reformulated as

min ‖x‖1 s.t. YΦx ≥ 0, ‖x‖2 = 1 (18)

A geometrical view of the principle of the 1-bit compressive

sensing scheme is shown in Fig. 6.

One
measurement two

measurements

optimal
solution

(a) (b)

Figure 6. A geometrical interpretation of the 1-bit compressive sensing
scheme. (a) one measurement (b) two measurments

Each binary measurement defines a hyperplane which con-

fine the optimal solution in one of the two subspaces divided

by the hyperplane. The hyperplane has a random orientation

due to the randomized projection matrix Φ. As shown in

Fig. 6(a), with only one measurement, the optimal solution

can not be unambiguously determined. Due to the randomness

of the hyperplane orientation, we will have a high probability

of confining the solution subspace so that there is only one

optimal solution in the subspace once we have enough mea-

surements. As shown for the case in Fig. 6(b), we can uniquely

determine the optimal solution with two measurements.

A number of algorithms has been proposed to solve (18)

such as matching sign pursuit [8], and restricted-step shrinkage

[9], among which the binary iterative hard thresholding(BIHT)

[10] algorithm offers the best robustness. BIHT is a simple

modification of iterative hard thresholding (IHT) [11] which

solves the problem

min ‖y −Φx‖2 s.t. ‖x‖0 = K. (19)

We further customize the BIHT algorithm to monitor only

the support of the solution in each iteration. The customized

algorithm is summarized in Algorithm 1. Line 3 calculates the

gradient 1
2Φ

T (y−sgn(Φxj)) at xj and moves xj towards the

direction of the gradient with a step size τ . The function fK(·)
keeps the K largest entries in terms of magnitude and zero-out

the rest of the entries. The iteration stops when the support

or the non-zero locations of xj+1 remains the same as the

previous iteration.
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Algorithm 1: A customized BIHT algorithm

Inputs: Pre-charge matrix Φ, binary measurements y,

multi-touch support K, step size τ
Output: Non-zero locations of Δc
Initialization:

1 x0 = 0

Iteration:

2 repeat
3 zj+1 = xj + τ

2Φ
T (y − sgn(Φxj))

4 xj+1 = fK(zj+1)
5 j = j + 1
6 until supp(xj+1) == supp(xj);
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Figure 7. The touch detection probability and number of iterations as a
function of the number of measurements.

Figure 7 shows a Monte Carlo simulation with the ca-

pacitance sensing model and the customized reconstruction

algorithm. Every points on the figure is averaged over 1000

experiments. We assume a N = 16∗9 = 144 button touch pad

with K = 3 multi-touch support. The capacitance variation Δc
is assumed to be uniformly distributed in [0, 1] at K randomly

picked locations. A successful detection means that the exact

K touch locations are resolved. The number of measurements

M varies from 0.5N to 10N with infinite SNR. The detection

probability of the K multi-touches increases as we obtain more

measurements while the number of iterations for the proposed

algorithm to converge decreases. With more measurements,

we will have a smaller solution subspace bounded by the

measurement hyperplanes. Therefore, we would have a higher

probability of locating the optimal solution in the subspace

and it takes the algorithm less iterations to converge to the

optimal solution. On the other hand, more measurements

means more power consumption and longer data acquisition

time with the AFE and more computations in the digital

reconstruction algorithm. Tradeoffs must be made between the

AFE power consumption and acceptable detection probability

by determining the optimal number of measurements.

Figure 8 shows a Monte Carlo simulation with variable

signal SNRs. The setups are exactly the same as in Fig. 7

with zero mean additive Gaussian noises applied to the mea-

surements. The detection probability increases as we take more

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SNR (dB)

D
et

ec
tio

n 
pr

ob
ab

ilit
y

M = 5 N
M = 6 N
M = 7 N
M = 8 N
M = 9 N
M = 10 N

Figure 8. The touch detection probability as a function of the signal SNR.

measurements or have a higher SNR.

IV. CONCLUSIONS

This paper presents a novel architecture for the design

of an ultra low power self-capacitive touch sensing analog

front end by exploiting the sparsity of simultaneous touches

with respect to the number of sensor nodes. The proposed

AFE is significantly simplified compared with the standard

AFE design which requires one or multi-channel ADCs. The

number of measurements required in order to resolve the touch

positions is related to the number of simultaneous touches

rather than the number of sensor nodes. The touch positions

will be resolved by a recovery algorithm in the digital domain.
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