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ABSTRACT

This paper considers the problem of testing for the indepen-
dence among multiple random vectors with each random vec-
tor representing a time series captured at one sensor. Imple-
menting the Generalized Likelihood Ratio Test involves test-
ing the null hypothesis that the composite covariance matrix
of the channels is block-diagonal through the use of a gen-
eralized Hadamard ratio. These results are then extended to
the problem of detecting the presence of correlated time se-
ries when several observers each employ an array of sensors.
Assuming wide-sense stationary processes in both time and
space, results on large block-Toeplitz matrices suggest the use
of a broadband integral of a frequency-wavenumber depen-
dent Hadamard ratio as an alternative test statistic.

Index Terms— Broadband Coherence, Cross-Spectral
Matrix, Generalized Likelihood Ratio Test, Multichannel
Signal Detection

1. INTRODUCTION

Non-parametric detection of a common but unknown signal
among two or more data channels [1], [2] is a problem that
finds its uses in many applications including collaborative
sensor networks [3], geological monitoring of seismic activ-
ity [4], as well as radar [5] and sonar [6]. In [7], the authors
consider detection with multiple temporally correlated Gaus-
sian time series by constructing a Generalized Likelihood
Ratio Test (GLRT) that tests whether or not a space-time
covariance matrix is block-diagonal. Under this scenario, the
test statistic becomes a generalized Hadamard ratio involving
an estimate of the space-time covariance matrix computed
over multiple realizations. Assuming temporally wide-sense
stationary (WSS) random processes and allowing the length
of each time series to grow large, the test statistic is then
written as a broadband integral of the log Hadamard ratio of
an estimated cross spectral matrix, a broadband coherence.
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In this paper, we consider the detection problem addressed
in [7] for the purpose of detecting the presence of spatially
correlated time series using a network of sensor arrays. As-
suming WSS processes in both time and space, the likelihood
ratio is shown to converge to a broadband integral of a log
Hadamard ratio of a cross frequency-wavenumber spectrum,
when the length of each time series and the number of sen-
sors in each array grows large. Although this result is asymp-
totic, it suggests frequency/wavenumber implementations of
the GLRT detector even for low space and time support for
measured signals. The proposed detector is finally compared
to a similar technique using simulated space-time fields.

2. REVIEW OF THE LIKELIHOOD RATIO

The problem considered here is testing for the indepen-
dence among L random vectors {xi}Li=1 with each vec-
tor xi = [xi[0] · · · xi[N − 1]]

T representing a length N
time series captured at sensor i. Assuming this collection
of random vectors to be zero mean, the composite vector
z =

[
xT1 · · · xTL

]T ∈ CLN has space-time covariance ma-
trix

R = E
[
zzH

]
=


R11 R12 · · · R1L

RH12 R22 · · · R2L

...
...

. . .
...

RH1L RH2L · · · RLL

 (1)

with Rij = RHji = E
[
xix

H
j

]
∈ CN×N a temporal cross-

covariance matrix.
If the set of random vectors {xi}Li=1 is jointly proper

complex normal, testing for independence becomes a test of
whether or not the covariance matrix R is block-diagonal.
Casting this problem into the standard inference framework,
we consider the following hypothesis test

H0 : R ∈ R0

H1 : R ∈ R

withR denoting the set of all positive-definite Hermitian ma-
trices and R0 denoting the set of all matrices in R which are
additionally block-diagonal.
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We now assume we are given an experiment producingM
iid realizations, {z[m]}Mm=1, of the composite vector z. The
collection of random vectors

Z = [z[1] · · · z[M ]] ∈ CLN×M

has probability density function (PDF)

f (Z;R) =
1

πLNMdet (R)
M

exp
{
−M tr

(
R−1R̂

)}
with R̂ being an estimated composite covariance matrix

R̂ =
1

M

M∑
m=1

z[m]zH [m] =


R̂11 R̂12 · · · R̂1L

R̂H12 R̂22 · · · R̂2L

...
...

. . .
...

R̂H1L R̂H2L · · · R̂LL


and R̂ij being an M sample estimate of the matrix Rij . The
GLRT for this problem involves computing the likelihood ra-
tio [7]

Λ =

 max
R∈R0

f (Z;R)

max
R∈R

f (Z;R)

 1
M

=
det
(
R̂
)

∏L
i=1 det

(
R̂ii
) = det

(
Ĉ
)

(2)

where the matrix Ĉ, with N ×N blocks of the form{
Ĉ
}
i,k

= Ĉik = R̂
−1/2
ii R̂ikR̂

−H/2
kk ,

is commonly referred to as the coherence matrix. The likeli-
hood ratio given in (2) is a generalized Hadamard ratio and is
a statistic that remains invariant to invertible block-diagonal
matrices [7].

3. EXTENSIONS TO VECTOR-VALUED TIME
SERIES

In certain examples of multi-channel detection applications,
one may have the opportunity to observe multiple time series
from each channel. One such example is a situation where
several platforms or nodes each employ an array of sensors
such as in wireless acoustic sensor networks [8]. As before,
the problem considered here is to test for the independence
amongL random vectors, but we now assume that the random
vector from each channel

xi =
[
xTi [0] · · · xTi [N − 1]

]T ∈ CdN

contains N samples from a d-dimensional vector-valued time
series

xi[n] = [xi,0[n] · · · xi,d−1[n]]
T ∈ Cd

The generalized Hadamard ratio in (2) is still the appropriate
test statistic in this situation, the only difference being that
each block of the composite covariance matrix, Rik, given in
(1) is now dN × dN rather than N ×N .

As described in [7], the extension of the GLRT to the fre-
quency domain can be accomplished by first independently
applying the linear transformation T = FN ⊗ Id, with FN
denoting an N ×N DFT matrix, to the data from each chan-
nel. Define the length-N DFT vector

fN (ejθl) =
1√
N

[
1 ejθl · · · ej(N−1)θl

]T
and the matrix FN (ejθl) = fN (ejθl) ⊗ Id ∈ CdN×d. Then
the linear transformation

FHN (ejθl)xi =
1√
N

N−1∑
n=0

e−jθlnxi[n]

simply corresponds to a unitary DFT analysis of the ith chan-
nel at frequency θl = 2π

N l, l = 0, . . . , N − 1. Recalling
that the generalized Hadamard ratio is invariant to invertible
block-diagonal transformations, it follows that both sets of
signals, {xi} and {Txi}, share the same likelihood ratio so
that (2) can be written

Λ = det
(

(IL ⊗ T )Ĉ(IL ⊗ T )H
)

Introducing a permutation to the rows and columns of the
matrix inside this determinant, the GLRT can be written as
Λ = det C̃ where

C̃ =

 Ĉ(ejθ0) · · · Ĉ(ejθ0 , ejθN−1)
...

. . .
...

Ĉ(ejθN−1 , ejθ0) · · · Ĉ(ejθN−1)


is a matrix that not only captures the second-order informa-
tion between channels but also between frequencies. The ma-
trix Ĉ(ejθl , ejθm) ∈ CdL×dL is an L × L block matrix con-
sisting of d× d blocks of the form{

Ĉ(ejθl , ejθm)
}
i,k

= FHN (ejθl)ĈikFN (ejθm)

and we have used the convention Ĉ(ejθl) = Ĉ(ejθl , ejθl).
We now assume that all channels are temporally WSS in

the sense that, for any pair of channels xi and xk, there exists
a matrix-valued sequence, {Γik[l]}, such that

E
[
xi[n]xHk [n+ l]

]
= Γik[l] ∈ Cd×d

Results on large block-Toeplitz matrices [9], [10] show that
matrix C̃ is asymptotically equivalent to the block-diagonal
matrix

blkdiag
{
Ĉ(ejθ0), . . . , Ĉ(ejθN−1)

}
so that as N and M grow large, but d and L remain fixed, the
GLRT becomes

Λ1/N N→∞−→ exp

{∫ π

−π
ln det Ĉ(ejθ)

dθ

2π

}
= exp

{∫ π

−π
ln

det Ŝ(ejθ)∏L
i=1 det Ŝii(ejθ)

dθ

2π

}
(3)
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Again, the matrix Ŝ(ejθ) ∈ CdL×dL is an L × L block-
structured matrix consisting of d× d submatrices of the form{

Ŝ(ejθ)
}
i,k

= FHN (ejθ)R̂ikFN (ejθ)

which is a quadratic estimate of the cross power spectral den-
sity matrix between channels i and k at frequency θ and we
use the convention Ŝii(ejθ) =

{
Ŝ(ejθ)

}
i,i

.

The likelihood ratio given in (3) is not a particularly novel
result and is a direct extension of the results in [7] to account
for the situation being considered here. Although this result
is perfectly general in that nothing has been assumed about
these vector-valued time series other than that they are tem-
porally WSS, we proceed under the context of multiple-array
detection in which case a notion of space can be ascribed to
the time series of each channel.

To take advantage of the spatiotemporal properties of the
problem, we now consider independently applying the linear
transformation T = FN ⊗ Fd to each channel (as opposed to
the matrix T = FN ⊗ Id considered earlier) with Fd denot-
ing a d× d DFT matrix. Note that pre-multiplying the vector
xi by the matrix T simply corresponds to the application of
a 2-dimensional DFT, one applied temporally and the other
spatially. For any frequency θ, we can then introduce a per-
mutation of the rows and columns of the previously defined
matrix Ĉ(ejθ) so that

det Ĉ(ejθ) = det C̃(ejθ)

where

C̃(ejθ) =


Ĉ(ejθ, ejφ0 ) · · · Ĉ(ejθ, ejφ0 , ejφN−1 )

...
. . .

...
Ĉ(ejθ, ejφN−1 , ejφ0 ) · · · Ĉ(ejθ, ejφN−1 )


and Ĉ(ejθ, ejφl) = Ĉ(ejθ, ejφl , ejφl). Define the length-d
DFT vector at frequency φl = 2π

d l for l = 0, . . . , d − 1 as
follows

fd(e
jφl) =

1√
d

[
1 ejφl · · · ej(d−1)φl

]T
.

Then the matrix Ĉ(ejθ, ejφl , ejφm) ∈ CL×L has entries of
the form[

Ĉ(ejθ, ejφl , ejφm )
]
i,k

= fHd (ejφl )FHN (ejθ)ĈikFN (ejθ)fd(e
jφm )

When the entries of xi[n] correspond to time series at differ-
ent spatial locations, the frequency variable φ is often referred
to as the wavenumber and, to avoid confusion with the vari-
able θ, we will adopt this terminology.

We now impose additional structure on the problem at
hand by assuming that all channels are not only temporally
WSS but spatially WSS as well so that the multivariate covari-
ance function, {Γik[l]}, considered earlier now corresponds
to a sequence of Toeplitz matrices. That is, for any pair of

Fig. 1. Detection of a Source using Multiple Linear Arrays.

channels xi and xk, we now assume that there exists a two-
dimensional sequence, {γik[l,m]}, such that

E
[
xi,p[n]x∗k,p+m[n+ l]

]
= γik[l,m] ∈ C

with l a temporal lag and m a spatial lag.
Again invoking results on large block-Toeplitz matrices,

it follows that the matrix C̃(ejθ) is asymptotically equivalent
with the block-diagonal matrix

blkdiag
{
Ĉ(ejθ, ejφ0), . . . , Ĉ(ejθ, ejφd−1)

}
so that as M , N , and d grow large but L remains fixed the
GLRT becomes

Λ
1

dN = det
(

(IL ⊗ T )Ĉ(IL ⊗ T )H
) 1

dN

= det
(
C̃
) 1

dN

N→∞→ exp

{∫ π

−π
ln det

(
Ĉ(ejθ)

) 1
d dθ

2π

}
d→∞→ exp

{∫ π

−π

∫ π

−π
ln det Ĉ(ejθ, ejφ)

dθdφ

4π2

}
= exp

{∫ π

−π

∫ π

−π
ln

det Ŝ(ejθ, ejφ)∏L
i=1 Ŝii(e

jθ, ejφ)

dθdφ

4π2

}
(4)

The matrix Ŝ(ejθ, ejφ) ∈ CL×L has elements[
Ŝ(ejθ, ejφ)

]L
i,k=1

= fHd (ejφ)FHN (ejθ)R̂ikFN (ejθ)fd(e
jφ)

which is a quadratic estimate of the cross power spectral den-
sity between channels i and k in the frequency/wavenumber
domain. Thus, we see that the GLRT involves the computa-
tion of a Hadamard ratio at each frequency/wavenumber pair
(θ, φ), followed by broadband integration of its logarithm, a
broadband-broadwavenumber coherence.

4. SIMULATION RESULTS

In this section we consider a situation where L = 3 spa-
tially separated uniform linear arrays (ULAs), each consist-
ing of d = 16 sensor elements, receive distinct wideband
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signals from a single point source as depicted in Figure 1.
The signals received by the elements of each array, s[n] =

[s1[n] s2[n] s3[n]]
T , are assumed to be generated from the

following multivariate autoregressive model [11]

s[n] = Φs[n− 1] + ws[n]; n = 0, . . . ,MN − 1

where the driving process ws[n] is taken to be a zero-mean
proper complex normal random vector with covariance matrix

E
[
ws[n]wH

s [n+ l]
]

= δlσ
2
sIL

and Φ is an arbitrarily chosen L × L matrix. These signals
have the following frequency-dependent spectral density ma-
trix

Sss(e
jθ) =

 σ2
11(ejθ) σ2

12(ejθ) σ2
13(ejθ)

σ2
12(ejθ)∗ σ2

22(ejθ) σ2
23(ejθ)

σ2
13(ejθ)∗ σ2

23(ejθ)∗ σ2
33(ejθ)


= σ2

s

(
IL − e−jθΦ

)−1 (
IL − e−jθΦ

)−T
The signal received at each array is then propagated as

a planewave among its elements. At each d-element array a
spatially correlated, temporally white noise is added indepen-
dently of all other arrays. Consequently, each d × d block of
the frequency-dependent spectral density matrix of the com-
posite observation can be written as follows

{
S(ejθ)

}
i,k

=

 σ2
ii(e

jθ)ai(e
jθ)aHi (ejθ) +Rni i = k

σ2
ik(ejθ)ai(e

jθ)aHk (ejθ) i 6= k

Here, the vector ai(ejθ) denotes the array response or steering
vector for the ith ULA

ai(e
jθ) =

[
1 e−jθτi · · · e−j(d−1)θτi

]T
with τi representing the propagation delay among the sensor
elements. Also, the matrix Rni

denotes the banded Toeplitz
matrix associated with passing unit-variance white noise
through a 5th-order FIR filter with arbitrarily chosen weights.

Upon collecting all MN measurements at each sensor el-
ement, the data record is temporally partitioned into M non-
overlapping copies of a time series of length N = 24. The
likelihood ratio given in (4) (denoted “Frequency/Wavenumber
Domain GLRT”) is then used to discriminate situations where
a source is present from those in which each sensor array ob-
serves its own correlated noise field only. The performance of
this detector is compared to the frequency domain version of
the GLRT given in (3) (denoted “Frequency Domain GLRT”).

With M = 250 and a -3 dB source, Figure 2 displays
the Receiver Operating Characteristic (ROC) curves for these
two detection methods. Likewise, Figure 3 displays the same
with M = 50 and a 6 dB source. From these ROC curves it
is clear that the version of the GLRT given in (4) provides a
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Fig. 2. Detection Performance with M = 250 and SNR =
−3 dB.
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Fig. 3. Detection Performance with M = 50 and SNR = 6
dB.

significant improvement in detection performance compared
to its alternative in (3). This is likely due to the fact that the
likelihood ratio given in (4) is better matched to the (spatially)
WSS case versus its alternative given in (3) which, while more
generally applicable, does not fully exploit wide-sense sta-
tionarity.

5. CONCLUSIONS

Detecting the presence of common characteristics among two
or more data channels is a problem that finds its uses in a wide
range of applications. One possible solution to this problem
is the use of a GLRT that tests whether or not a composite co-
variance matrix is block-diagonal through the use of a gener-
alized Hadamard ratio. In the case of multiple sensor arrays,
wide-sense stationarity in both time and space suggests the
use of a broadband-broadwavenumber implementation of the
GLRT. Simulations demonstrate that the proposed technique
presents an appealing version of the GLRT that can provide
improved detection performance for such an application.
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