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ABSTRACT

In this paper, a distributed detection model is introduced for m-ary

hypotheses testing where the local sensors quantize their decisions

to messages with alphabet size of D and the number of local

sensors is random following a Poisson distribution. This model

can be applied to a wide variety of distributed detection prob-

lems including homogenous and heterogeneous networks, robust

detection under security attacks, and sensor failure mode analysis.

As an illustrative example, the proposed model is applied to a

Cognitive Radio network where the performance and strategies re-

garding Byzantine attacks are investigated under a game theoretical

setting. Performance tradeoff between the detection efficiency and

robustness of the sensor network is evaluated under the independent

Byzantine attack model, where the malicious nodes attack based

solely on their own observations. It is shown that, when the system

is designed for maximum efficiency versus optimal robustness, then

the malicious users may completely blind the fusion center, with

less than one half of the total number of sensors.
Index Terms—Distributed Detection, Random Sensor Model, Byzan-

tine Attacks, Cognitive Radio, Spectrum Sensing

I. INTRODUCTION

Sensors are subject to power failure, drift, poor communica-

tion links, and other challenges that impact the active number

of sensors performing distributed data collection and inference.

As a result, the number of resource constrained wireless sensors

within any distributed detection (DD) system is often a random

variable. Contrast this with most DD analysis where the network

is considered rather static and homogeneous, and the number of

active sensor is often considered to be fixed and known [1], [2].

Even within the dynamic environment of collaborative spectrum

sensing (SS) for wireless sensor networks (WSN) or Cognitive

Radio networks (CRNs) under Byzantine security attacks, the

sensor count is often assumed deterministic and known (see [3],

[4] and references therein). Notable exceptions to this claim appear

in [5] and references therein.

To investigate the random active sensor problem, this paper

introduces a new method based on a statistical model for the

number of active sensors with multiple levels of local decisions

that can be used to effectively study DD problems of interest.

This includes collaborative sensing in CRNs, security attacks in

WSNs, performance analysis of heterogeneous WSNs, etc. It also

provides a method to study the impact of sensor failure modes on

network detection performance. Generally, the model allows for

m-ary hypotheses testing where the local sensors quantize their

decisions to D messages and the number of local sensors is random

following a homogeneous spatial Poisson process.

Using the model developed in Section II this paper will study

Byzantine attacks in CRNs in Section III. There we analyze the

case, where in an attempt to garner an advantage in spectrum

access, the malicious Cognitive Radios (CRs) apply a random attack

strategy in an attempt to mask their presence to the Fusion Center

(FC) while deteriorating the CRN SS performance. In doing so, this

work essentially extends [6] and [7] by incorporating randomized

attacks with FC detection sensitivity considerations.

Throughout, we use the following notation. Upper case letters

represent a random variable and lower case a realization of a

random variable (e.g. X = x). The operation E [·] is the prob-

ability expectation operator. I (p||q) denotes the Kullback-Leibler

divergence (KLD) between two probability mass functions p and q
and it is assumed 0 log (0/qk) = 0, ∀qk.

II. RANDOM DISTRIBUTED DETECTION MODEL

Consider a general distributed target detection problem in a

sensor network consisting of a random N number of sensors,

and a single FC. There are m hypotheses about the target,

H0, . . . , Hm−1. Each sensor’s local observation Xj is conditionally

independent given a respective hypothesis with a conditional distri-

bution Pr (Xj |Hk). The sensor generates an output Uj = γj (Xj),
where γj : Xj → {0, . . . , D − 1} with D the size of the sensor

message set. Each of the messages u1, . . . , uN is transmitted to

the FC, which applies a decision rule γ0 : {0, . . . , D − 1}N →
{0, . . . ,m− 1}. The preceding formulation is similar to [8], but

assumes a random number of sensors.

II-A. Proposed Model

Let the local observation under hypothesis Hk be xj =
hk (rj , wj), which is a deterministic function of the random

vector parameter Rj = rj under Hk and independent identically

distributed (i.i.d.) noise, wj . Also, assume the location of the target

and all the sensors to be randomly distributed across the area of

interest (AOI) as described in [9]. Clearly, when the target is mobile

and the sensor network is resource constrained (bandwidth and

power) it is not feasible to know rj exactly. Hence, Pr (Xj |Hk)
is unknown and the optimal statistical test can not be applied

for γ0 or any γj . However, it may be possible to estimate via

training or by statistical calculation an average rj , say r̄ ( [9] and

cellular area reliability in [10] or the appendix of [11]). With this

formulation, each sensors observation is conditionally independent

and identically distributed (i.i.d.) in an average sense.

When the DD performance is evaluated under the Bayesian

framework, the performance of the DD system is often measured

by the overall probability of error, Pr (U0 6= Hk) in the m-ary

hypotheses testing problems [12]. With a-priori known probabilities

Pr (Hk), k = 0, . . . ,m−1, then the minimum probability of error

fusion rule γ0 is the maximum a posteriori (MAP) rule

γ0 : Select Hk : k = arg max
k=0,...,m−1

Pr (Hk) · Pr (a |Hk) , (1)
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where a = [A0, A1, · · · , AD−1], Ad =
∑N

j=1
(uj = d), and d =

0, 1, . . . , D − 1.

Let φk,d = Pr (uj = d |Hk, r̄) be the conditional probability of

making decision d at sensor j when the underlying hypothesis is

Hk. Given the conditionally i.i.d. in an average sense assumption,

it can be shown that φk,d is equal across all sensors and uniquely

determined by γ̄ and hk (r̄, wj) for a given Hk. For any given

realization of the random variable N = n, then Ad given Hk

follows a binomial distribution with parameters n, and φk,d (i.e.

(Ad |Hk, N = n) ∼ Binomial (n, φk,d)). Consistent with [5],

[13], we model N as a homogeneous spatial Poisson process with

parameter λ across the AOI. That is, Ad |Hk ∼ Poisson (λφk,d)
such that

Pr(Ad|Hk) =
(λφk,d)

Ad e−λφk,d

Ad!
(2)

by section 4.4 of [14].

Employing the proposed Poisson model can greatly reduce the

complexity in analyzing complicated distributed inference systems,

for example, a simple linear optimal fusion rule at the FC as

described in the following Lemma 1. A similar linear form can be

obtained for the binary hypotheses testing case under the Neyman-

Pearson framework.

Lemma 1. With the known a-priori probability Pr (Hk), the m-ary

MAP detector of (1) is equivalent to

arg max
k=0,...,m−1

[

log Pr (Hk) +

D−1
∑

d=0

(Ad log (λφk,d)− λφk,d)

]

,

where the number of sensors N ∼ Poisson (λ), and Ad and φk,d

are as previously defined.

Proof: Substitute (2) into Pr (a |Hk) =
∏D−1

d=0
Pr (Ad |Hk)

and apply to (1). Then take the logarithm and cancel common terms.

II-B. WSNs with On-Off-Keying Transmission Scheme

Even though (1) has a closed form solution, calculation of the

general m-ary probability of error is often complicated. However,

there are special cases of interest to DD that do offer tractable

solutions. One application is for WSNs under very stringent

resource constraint where the sensors employ an on-off-keying

(OOK) transmission scheme such that they only transmit when

needed, e.g., when their decision is 1. In this case, the only

information available at the FC is the observed active sensor count

A1 with m = D = 2. This OOK scheme purposefully trades

off detection accuracy for a reduction in both transmission power

consumption and spectrum usage/interference. Both of which are

of importance in CRNs and in general WSNs.

Under the OOK transmission scheme and assuming that the

communication link is virtually error free for this ultra low com-

munication scheme, the optimal fusion rule determined in Lemma

1 can be reduced to

A1

H1

≷
H0

η0, (3)

where η0 is the fusion rule threshold.

III. BYZANTINE ATTACK IN A CRN OF RANDOM SIZE

The remainder of this paper will explore this latter special

case of OOK transmission scheme and analyze the collaborate

SS performance in CRNs. Specifically, we consider a CRN using

parallel collaborative SS to determine if the primary user (PU) is

present, say H1, versus the primary absent, say H0. When the local

observations are conditionally independent, the CRs make their own

independent inference regarding H0 versus H1 and transmit only

uj = 1 when deciding H1 and make no transmission when deciding

H0 to minimize spectrum interference (i.e. m = 2, D = 2, with

an OOK transmission scheme)

Under the relatively common path loss model [7], the observed

signal to noise ratio (SNR) at local sensor j is h1 (r̄, wj) [dB] =
P0[dB] −PL (r̄) [dB] +W [dB] and h0 (rj , wj) = W [dB], under

H1 and H0, respectively, where P0 is the PU transmission power,

PL (r̄) the average path loss, W [dB] a Gaussian noise W [dB] ∼
N

(

0, σ2
)

(i.e. log-normal), and r̄ as described in II-A. As a result,

the local sensor performance is given by

φ0,1 = p̄fa = Q
( η

σ

)

, (4)

φ1,1 = p̄d = Q

(

η − (P0 − PL (r̄))

σ

)

(5)

based on the local likelihood ratio test (LRT) with an identical

threshold η ∀j and Q (x) = 1√
2π

´∞
x

exp
(

− 1

2
τ2

)

dτ is the

Gaussian complementary cumulative distribution function.

For CR applications, it is critical for the secondary users to

maintain a very low level of spectrum interference against the

primary. That is, the probability of spectrum collision has to be held

below some constraint β. Putting things into a Neyman-Pearson

framework, this is equivalent to requiring the CRN probability of

miss, PM ≤ β or the detection probability PD = 1 − PM > β,

at the fusion center. Similarly, the CRN system level false alarm

probability notation is PFA.
As spectrum is highly desirable, in certain cases one or some

users may want to gain an unfair advantage over the other users

in obtaining access to the spectrum when it is available. In such

cases, a Byzantine attack can be made by internal members of the

CRN having full knowledge of the collaborative sensing scheme

including the local CR sensing rules, FC algorithm, and their

respective thresholds [4]. Within a CRN, the goal of the Byzantines

is to provide false information to the FC, attempting to make the

FC decide the primary is present, when it is in fact absent. With

this attack strategy, the Byzantines increase their chances of using

the spectrum, relative to the honest CRs in the network.

The security problem we investigate here, at first glance, is

very similar to the ones studied in [6], [7]. There are, however,

substantial differences in the problem setups such as the network

structure and the security problem constraints. The first difference

is that we are interested in a CRN with a random number of CRs,

which can be described by the proposed Poisson model in Section

II. That is, the CRN consists of C classes of CRs having labels

Ci, i = 1, 2, . . . , C where class Ci has Ni ∼ Poisson (λi) total

CRs. Here, all CRs sharing a common decision rule and subsequent

communication strategy are grouped into the same class. This

formulation allows some CRs to move between classes by selecting

different strategies, as would be the case if Byzantine attackers were

attempting to thwart FC Byzantine detection strategies (see [7],

[15]). Let CRi,j represent the jth CR in the ith class, where j =
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0, 1, . . . , Ni. Then the local decision by CRi,j is ui,j = k, when

the local inference is Hk, k = 0, 1. Second, the security problems

considered in [6], [7] are mostly 1-shot detection problems, i.e., the

malicious users’ only goal is to cause the maximum performance

degradation in the detection performance for a single round. In

practical applications, the malicious user’s can be identified based

on the CRs historical decisions when spectrum sensing is carried

out for many rounds. Upon identification, the suspicious user’s

decisions can then be removed from the FC decision making and

defeat the Byzantine attack. Therefore, in order to perform a lasting

attack, it is pivotal that the behavior of the Byzantine CRs is not

too different from the honest CRs as they attempt to mask their

identities. In short, we focus on an independent Byzantine attack

(IBA), where the attackers operate solely on their own decision,

and study performance degradation and masking sensitivity when

the CRN has reached quasi-equilibrium / steady state. The settings

for our security problem is presented as follows.

• The FC has the full knowledge of the CR Byzantine proba-

bility, δ, and from its perspective, the decision rules and the

performance of the average Byzantine and honest CR.

• Based on the full knowledge of both the malicious and honest

CR decision performance, the FC can adjust its decision rule to

ensure a CRN probability of miss, PM ≤ β, where β ∈ (0, 1)
defines the maximum acceptable probability of spectrum colli-

sion with the primary. Under this and the previous assumption,

it is known that the asymptotic detection performance can be

measured by the KLD .

• The IBA CRs know the honest CR decision rule, and can select

their local decision rules. The number of different decision

rules available is finite, constrained by C, the total number of

classes available.

• The average IBA CR inference performance is within a certain

range of the honest CRs, (e.g. limiting FC sensitivity to IBA

presence), to reduce their chance of being identified by the

FC. In this paper, we evaluate the sensitivity by the KLD.

• The communication of ui,j , when received by the FC, is

received error free and only ui,j = 1 is transmitted (OOK).

As the communication to the FC by CRi,j is ui,j , we define the av-

erage local detection probability as p̄di = ECi [Pr {ui,j = 1|H1}]
and false alarm probability as p̄fai

= ECi [Pr {ui,j = 1|H0}],
where the expectation is taken across class i. Notice that we have

added the subscript i relative to (4) and (5). Throughout, we define

C1 as the honest class and assume that the Byzantines can select

any (p̄fai
, p̄di) pair on the interior of the upper receiver operating

characteristic (ROC) curve defined by (p̄fa1
, p̄d1) obtained by

adjusting the threshold η1 for C1, and the lower or reciprocal ROC

defined by (1− p̄fa1
, 1− p̄d1). Both the upper and reciprocal ROC

curves define a closed set and appear in Fig. 1. In this manner, the

Byzantines are able to select any achievable operating point on this

interior that optimizes their attack strategy.

Clearly, under Byzantine attack the FC is unaware of C, p̄di ,

and p̄fai
for some i and cannot apply the optimal Chair-Varshney

fusion rule even in equilibrium. Therefore, the FC has to treat the

local decision ui,j equally and the optimal fusion rule reduces to

a simple counting rule such that

γ0 :
∑

i,j

ui,j =
C

∑

i=1

Ai,1

H1

≷
H0

η0, (6)

where Ai,1 =
∑Ni

j=1
(ui,j = 1) ∀j ∈ Ci.

III-A. Byzantine Attacks: A Performance Analysis

We now analyze the performance of the Byzantine attack from

both the viewpoint of the attackers and the FC. Let δ ∈ [0, 1]
be the probability that a CR in the CRN is a Byzantine attacker.

Specifically, if λ =
∑C

i=1
λi is the mean number of CRs in the

CRN, then

λB = δλ =
∑

i∈CB

λi, (7)

where λB is the mean number of Byzantine CRs,

CB is an index set for all Byzantine classes

(CB = {i : ∀CRi,j ∈ Ci, P (ui,j = u1,j) 6= 1 ∀j}), and each

λi can be chosen arbitrarily subject to (7).

In order to maximize their access to the shared spectrum,

the Byzantine attackers desire the FC to infer that the pri-

mary is present when in fact they are absent. Define bd =
ECB

[p̄di ] as the average quasi-equilibrium detection probability

across the Byzantine classes and similarly bfa = ECB
[p̄fai

].
Then the KLD between the honest and average Byzantine CR is

Ifa (p̄fa1
||bfa) = p̄fa1

log
p̄fa1

bfa
+ (1− p̄fa1

) log
(1−p̄fa1

)
(1−bfa)

and

similarly for Id (p̄d1 ||bd). Thus our sensitivity masking constraint

in terms of these KLDs is defined as Ifa + Id ≤ ρ for an

appropriate ρ > 0. To maximize their attacking performance, the

Byzantine attackers then have the following optimization problem

to solve

maximize: PFA (8)

subject to:
∑

i∈CB

λi ≤ λB ; Ifa + Id ≤ ρ

using the tuple (C, λi, p̄fai
, p̄di) for all i ∈ CB . When the

Byzantines achieve PFA = PD for (8), we will call this fusion

center blinding (FCB), as the fusion center cannot make a more

informative decision than a random guess.

Next, to shed light on this security problem and illustrate the

tradeoff between the performance and robustness, we evaluate

the Byzantine attack security problem for a CRN with λ = 50,

SNR = −2.2dB corresponding to an honest CR operating point

of (p̄fa1
, p̄d1) = (0.3, 0.6), a Byzantine probability δ = 0.45, and

a sensitivity masking threshold ρ = 0.4.
Notice that the pairs (p̄fa1

, p̄d1) and (bfa, bd) define an equiv-

alent C = 2 CRN and that formulation is sufficient to study the

performance degradation and sensitivity masking problems from the

viewpoint of the FC. Using this sufficient model, the optimization

problem in (8) can be depicted graphically. As described previously,

Fig. 1 shows the ROC curves obtained by adjusting the threshold

η1 for the honest class. The interior of the upper and reciprocal

ROC curves bound the possible values allowed for (bfa, bd), which

in general requires a class decision rule that uses randomization

between different LRTs in order to be achieved. The “Honest” label

in Fig. 1 highlights the quasi-equilibrium operating point for the

honest CRs. Fig. 1 also depicts the constraint Ifa + Id ≤ ρ and

the optimal average attack at the point labeled (bfa, bd).
While solving (8) is possible for the Byzantines, it is not so

straightforward for the FC to analyze in order to understand its

sensitivity to an IBA. Certainly, the FC can calculate PFA =

Pr
(

∑

i,j ui,j > η0|H0

)

and PM = 1−Pr
(

∑

i,j ui,j > η0|H1

)

with the Poisson complementary cumulative distribution function
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Fig. 1. Local CR ROC Operating Model: ρ = 0.4, λ = 50,

δ = 0.45, (p̄fa1
, p̄d1) = (0.3, 0.6), (bfa, bd) = (0.58, 0.36) ,

(sfa, sd) = (0.67, 0.60)

(CCDF) and determine sensitivity directly. However, the Poisson

CCDF does not have a closed form solution and it is difficult

to form equations that offer deeper insight into the problem.

An alternative approach is to use the KLD to evaluate the error

exponent similar to [6], [7].

Given the constraint such that PM ≤ β, the exponential rate for
PFA with conditionally i.i.d. observations is [7]

lim
N→∞

logPFA

N
= −I



Pr





∑

i,j

ui,j |H1



 ||Pr





∑

i,j

ui,j |H0







 ,

based on the fusion rule in (6). Thus for N large PFA ≈

2−NI(Pr(
∑

i,j ui,j |H1)||Pr(
∑

i,j ui,j |H0)), which can be asymp-

totically maximized by minimizing the KLD. Notice that

Pr
(

∑

i,j ui,j |H1

)

∼ Poisson
(
∑

i λip̄di
)

and similarly under H0.

Let λd =
∑

i λip̄di and let λf =
∑

i λip̄fai
. For two Poisson

distributions with parameters λd and λf , the KLD I (λd ||λf )
between these two distributions is

I (λd ||λf ) = log e (λd (log λd − log λf )− (λd − λf )) . (9)

Since I (λd ||λf ) is convex in the pair (λd, λf ) [16], the

maximization problem of (8) can be formed as the following convex

minimization problem when the solution is on the ROC interior

minimize: I (λd ||λf ) (10)

subject to: PM ≤ β;
∑

i∈CB

λi ≤ λB ; λf ≤ λd; Ifa + Id ≤ ρ,

that is straightforward to solve [17]. Notice that the FC suffers

FCB in (10) when log λd

λf
= 1 −

λf

λd
, with λf = λd a solution.

Expanding λf = λd using λ1 = (1− δ)λ via (7) results in

ΣC
i=2λi (p̄fai

− p̄di) = (1− δ)λ (p̄d1 − p̄fa1
) , (11)

representing a general FCB equation with C1 the honest class.

As the FC desires to understand its sensitivity to a worst case IBA

attack under quasi-equilibrium it is sufficient to use the equivalent

(bfa, bd) and C = 2 model to find a relationship between FCB and

δ, which we will define as δ∗. Simplifying (11) and solving

δ∗ =
(p̄d1 − p̄fa1

)

(p̄d1 − p̄fa1
) + (bfa − bd)

(12)
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Fig. 2. CRN Byzantine Attack Sensitivity: λ = 50, δ = 0.45,

(p̄fa1
, p̄d1) = (0.3, 0.6) , (bfa, bd) = (0.58, 0.36) , (sfa, sd) =

(0.67, 0.60)

so that if δ ≥ δ∗, FCB at the FC is possible. Note that (12) based

on a random number of CRs in the CRN is similar to the minimal

KLD version derived in [7] for a fixed number of sensors.

We now plot δ∗ versus p̄fa1
in Fig. 1 for the associate

(p̄fa1
, p̄d1) and (bfa, bd) parameters defined. The required δ∗

changes as a function of p̄fa1
and provides a robust method that

the FC can employ to avoid FCB. When the DD system is designed

to be less aware of the IBA and operating in a non-robust region,

then there are δ = δ∗ ≤ 1

2
that achieve IBA FCB, which differs

relative to [7] since our model allows the Byzantines to pick freely

from the set of all possible ROC bounded operating points.

In general, the IBA tries to minimize δ∗, while the FC attempts

to maximize it by adjusting (p̄fa1
, p̄d1) and its threshold η0 to

meet PM ≤ β. This essentially defines the game played between

the FC and the IBA attackers. Finally, the optimal attack location,

(bfa, bd), in Fig. 1 was determined by solving (10) using CVX, a

package for specifying and solving convex programs [18], [19].

Intuitively, it would seem optimal to select the local Byzantine

operating point to be the maximum false alarm rate, say sfa where

the s stand for suboptimal, given the Ifa+Id ≤ ρ constraint. This

point is labeled as (sfa, sd) in Fig. 1. However, (12) implies that

the optimal attack occurs when (bfa − bd) is maximized, which

certainly does not occur at (sfa, sd).
We close with a plot of system level ROC curves generated using

PD versus PFA calculated using the Poisson CCDF function for

the IBA described in Fig. 1. These results appear in Fig. 2. The

first ROC is the case where all CRs are honest and is the “best

achievable” bound. The second curve is an optimal IBA with δ =
0.45. Since δ < δ∗ (see Fig. 1), FCB is not achieved as expected.

The final ROC curve is for the (sfa, sd) operating point, which is

clearly inferior to the optimal (bfa, bd) strategy.

IV. CONCLUSION

A new distributed detection model was introduced for distributed

m-ary hypotheses testing where the local sensors quantize their

decisions to D messages and the number of local sensors is

random. The model was applied to a CRN and provided a tool to

analyze Byzantine attacks, where the attackers randomly changed

their strategy using a defined number of classes, under a game

theoretical settings. Both the optimal FC and Byzantine strategies

were determined as well as the associated tradeoffs between the

detection performance and system security against the attacks.
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