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ABSTRACT

In this paper, we consider a wireless communication scenario where

M sources simultaneously transmit towards a base station equipped

with an array of K sensors. A new method is proposed to

solve the spatial signature estimation problem without resorting to

training sequences and without knowledge of sources’ covariance

structure. By assuming that the sources’ amplitudes vary between

successive time blocks, a fourth-order tensor decomposition of the

multimode spatio-temporal data covariance is proposed, from which

an iterative algorithm is formulated to estimate sources’ spatial

signatures. A distinguishing feature of the proposed tensor method

is its efficiency in treating the case where the sources’ covariance

matrix is non-diagonal and unknown, which generally happens when

working with sample data covariances computed from a reduced

number of snapshots.

Index Terms— Array processing, spatial signature estimation,

tensor decomposition.

1. INTRODUCTION

In the uplink scenario, where mobile users communicate with the

base station, the knowledge of spatial signatures is important to

the design of space division multiple access (SDMA) techniques

[1]. The literature on matrix-based methods for spatial signature

estimation is abundant (see e.g. [2] for an overview). The existing

solutions can be categorized into different ways depending on

assumptions involving (i) the knowledge (or not) of pilot signals,

(ii) the use of parametric or nonparametric models for the spatial

signatures, (ii) the use of sources’ statistical independency or

cyclostationarity, to mention a few. In this context, blind methods

are of particular interest, as they are more bandwidth-efficient and

avoid tight user synchronization [3]-[8].

The large majority of blind estimation methods in general do not

take into account the multidimensional structure of the data, which

may span several dimensions such as space, time and/or frequency.

Note that space may have two dimensions (e.g. azimuth and

elevation) while time dimension can be divided into snapshots and

frames. In order to deal with such multidimensional nature, tensor

decompositions have extensively been applied in recent years to

array signal processing problems [6, 7, 9] and also to communication

problems [10, 11, 12]. There are significant advantages of

using tensor-based signal processing instead of matrix-based signal

processing. Among these advantages, we can cite the improved

identifiability conditions in a blind setting, which generally come

from the essential uniqueness property of tensor decompositions.

†This work is partially supported by FUNCAP, CNPq and FAPDF
funding agencies.

Tensor-based algorithms also inherits the so-called “tensor gain”,

which translates into improved accuracy due to the efficient noise

rejection capability [13, 14].

In the context of tensor-based methods for spatial signature

estimation, previously proposed methods, such as [8], [7], [6], are

mainly based on the parallel factor (PARAFAC) analysis [15]. The

approach of [8] is of particular interest as it does not require any

knowledge on the propagation channel and/or array manifold, while

providing performances comparable to (or better than) competing

matrix-based methods. However, in these works, especially in

[8], the covariance matrix of the source signals is assumed to be

perfectly known and diagonal. In practice, it is known that these

properties correspond to having (i) uncorrelated signals coming from

the different users and (ii) a perfect estimate of the spatial covariance

matrix. Although the first assumption may hold in some scenarios,

the second only holds asymptotically, and a good approximation

requires computing sample covariance over a sufficiently large

number of snapshots. Our interest is to devise a method that can

provide accurate estimations of the users’ spatial signatures without

relying on such idealized assumptions.

In this paper, we propose an efficient method to solve the

spatial signature estimation problem without resorting to training

sequences and without knowledge of sources’ covariance structure.

By assuming that the sources’ amplitudes vary between successive

time blocks, a symmetric Tucker decomposition is formulated

by mapping a multimode spatio-temporal data covariance into

a fourth-order tensor. From the resultant tensor model, an

alternating least squares (ALS)-based iterative algorithm is proposed

to estimate sources’ spatial signatures. In contrast to [8], which

relies on the diagonality assumption for the sources’ covariance

matrix, the proposed tensor method can efficiently handle arbitrary

(non-diagonal) and unknown covariance structures. Consequently,

our approach is more attractive in practical settings where sample

covariances are computed from reduced number of snapshots.

Notation: The superscripts T,H ,†, and ∗ represent transpose,

Hermitian transpose, pseudo-inverse and complex conjugate,

respectively. The operator diag(a) forms a diagonal matrix based

on a. The r-th column of A ∈ C
J×R is denoted by A(:, r) ∈

C
J×1. The operator vec(A) converts A to a vector a by stacking

its columns on top of each other, while unvecJ×R(a) denotes the

inverse vectorization operation that converts a ∈ C
JR×1 back to

a J × R matrix. Dj(A) is a diagonal matrix constructed from

the j-th row of A, and || · ||F represents the Frobenius norm of

a matrix or tensor, which is defined as the square root of the sum

of the squared amplitude of its elements. The Kronecker product

and outer product operators are denoted by ⊗ and ◦, respectively.

The Khatri-Rao product between two matrices A ∈ C
J×R and

B = [b1 . . . bR] ∈ C
K×R, denoted by ⋄, is their column-wise
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Kronecker product

A ⋄ B =̇ [A(:, 1) ⊗B(:, 1), . . . ,A(:, R)⊗B(:, R)]. (1)

In this paper, the following property of the Kronecker product is used

vec(ABC) = (CT ⊗A)vec(B), (2)

where A, B and C are matrices of compatible dimensions. The

tensor operations are consistent with [16]: The r-mode unfolding

of a tensor T ∈ C
J1×J2×···×JR , symbolized by [T ](r) ∈

C
Jr×(J1J2...Jr−1Jr+1...JR), represents the matrix of r-mode vectors

of T . The order of the columns is chosen in accordance with [16].

The r-mode product of T and a matrix U ∈ C
Kr×Jr along the

r-th mode is denoted as T ×r U ∈ C
J1×J2···×Kr ···×JR , which is

obtained by multiplying the r-mode unfolding of T from the left

hand side (LHS) by U .

2. MEASUREMENT MODEL

We consider a wireless communication scenario where M sources

simultaneously transmit towards a base station equipped with an

array of K sensors. Let sm(n) denote the signal transmitted

by the m-th source that impinges on the antenna array with an

angle of arrival θm. The discrete-time received signal is given

by x(n) = As(n) + v(n), n = 1, . . . , N , where A =
[a1, . . . ,aM ] ∈ C

K×M is the spatial signature matrix of the

sources, s(n) = [s1(n), . . . , sM (n)]T ∈ C
M×1 is the source signal

vector associated with the n-th snapshot, and v(n) ∈ C
M×1 is the

additive white Gaussian noise term. Assuming that A is constant

during the observation interval of N snapshots, we have

X = AS + V , (3)

where X = [x(1), . . . ,x(N)] ∈ C
K×N is a matrix collecting the

received data, S = [s(1), . . . , s(N)] ∈ C
M×N is the transmitted

symbol matrix and V = [v(1), . . . ,v(N)] ∈ C
K×N is the noise

matrix. The additive noise is assumed to be uncorrelated with respect

to the sources. The sample spatial covariance matrix R ∈ C
K×K of

the signals received at the antenna array is given by

R ,
1

N
XX

H = A

(
1

N
SS

H

)

A
H +E, (4)

where E = 1
N

(
2Re{ASV H}+ V V H

)
represents the covariance

of the additive noise in conjunction with the cross-covariance

between the source signals and noise. Note that, for N → ∞, we

have 1
N
XXH → E{x(n)xH(n)}, 1

N
SSH → E{s(n)sH(n)} =

diag(α1, . . . , αK), where αk is the k-th source variance, and
1
N
V V H = σ2

vI , where σ2
v is the noise variance. We call attention

to the fact that α1, . . . , αK are unknown and not necessarily equal.

Equation (3) is the classical model for spatial signature estimation,

for which several matrix based techniques have been developed.

Among them, we can refer to traditional algorithms such a multiple

signal classification (MUSIC) and estimation of signal parameters

by rotational invariance techniques (ESPRIT) [2].

3. PROPOSED METHOD

Let us consider that the fixed number N of snapshots are divided

into P time blocks, each consisting of Ns = N

P
snapshots. At every

time block, the m-th source transmits a sequence sm ∈ C
Ns×1,

m = 1, . . . ,M , which is not known to the receiver. These The mean

Fig. 1. Data transmission structure.

power of each transmitted source waveform is guaranteed to vary

across these P time blocks. Such power fluctuations may naturally

occur in block fading channels (under the reasonable assumption that

source spatial signatures/directions of arrival vary much slowly than

the fading channel), or it may be artificially induced by means of

a time-varying power loading scheme in mobile communications,

where the mean power of each mobile user is subject to small

variations that can be done on top of usual power control [8]. Figure

2 illustrates the data transmission structure. Let us define the power

loading matrix W = [w1, . . . ,wM ] ∈ R
P×M , the m-th column

of which contains the set of coefficients for the m-th source, while

S = [s1, . . . , sM ]T ∈ C
M×Ns concatenates the source sequences.

The data received during the p-th time block is given by

Xp = ADp(W )S + V p ∈ C
K×Ns . (5)

Collecting the data received during the P time blocks, we obtain
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∈ C
PK×Ns (6)

or, equivalently,

X = (W ⋄A)S + V ∈ C
PK×Ns . (7)

Let us introduce the spatio-temporal multimode sample covariance

matrix

Rmm ,
1

Ns

XX
H ∈ C

PK×PK
. (8)

By first subtracting the estimated noise power from Rmm, we get

Rmm = Rmm − σ2
vI . Then, from (7), we have

Rmm = (W ⋄A)Rs(W ⋄A)H +E ∈ C
PK×PK

, (9)

where Rs , 1
Ns

SSH is the sample covariance matrix of the source

waveforms. The noiseless multimode matrix (9) can be viewed as

a symmetrical multimode unfolding of a fourth-order tensor R ∈
C

K×P×K×P given by

Rx = Rs ×1 A×2 W ×3 A
∗ ×4 W

∗ +E, (10)

where Rs ∈ C
M×M×M×M is the sources covariance tensor.

The fourth-order tensor decomposition (10) is commonly known

as the “Tucker4” decomposition [18] of Rx, where the associated

core tensor is given by Rs. In our case, due to the

conjugate symmetry of the spatio-temporal covariance matrix, the

resulting Tucker4 decomposition exhibits a partial symmetry. Let

[Rx](1,2);(3,4) ∈ C
PK×PK denote the multimode matrix unfolding

3017



of the spatial-temporal covariance tensor Rx that merges its first

and second modes row-wise and the third and second modes

column-wise. We have

[Rx](1,2);(3,4) = Rmm, (11)

Rs(:, m, :, m′) =

{
Rs, m = m′

0, otherwise
(12)

{m,m
′} = 1, . . . ,M,

where Rs(:,m, :,m′) ∈ C
M×M denotes a matrix slice

obtained by slicing the covariance tensor Rs along the plane

(m,m′), {m,m′} = 1, . . . ,M . Due to the partial symmetry

of the spatial-temporal covariance tensor Rx, we also have

[Rx](1,4);(3,2) = Rmm.

The Tucker4 decomposition (10) naturally captures any

structure for the sources covariance into the core tensor Rs,

meaning that the assumption of uncorrelated source signals is not a

restriction of the proposed decomposition. Moreover, assuming that

the covariances are computed over a finite (possibly small) number

Ns of snapshots, the diagonality of the sample covariance does not

hold, i.e. Rs = 1
N
SSH 6= diag(α1, . . . , αK), even for sources

that are uncorrelated in practice. In fact, assuming that the sources

covariance matrix is diagonal only holds asymptotically. Working

with arbitrary and unknown sources’ covariance structure is the main

motivation for the proposed approach. As a special case, under the

optimistic assumption of perfectly uncorrelated sources with known

unit variances, the Tucker4 decomposition simplifies to

Rx = I4,M ×1 A×2 W ×3 A
∗ ×4 W

∗ +E, (13)

where I4,M is the fourth-order “identity” tensor whose elements

are equal to one when all indices are equal and zero elsewhere. In

this case, the spatial-temporal data covariance follows a fourth-order

PARAFAC decomposition [18].

Our approach consists in estimating the spatial signature matrix

A without knowledge of the source covariance tensor Rs from

the spatial-temporal data covariance tensor Rx. This can be

done without knowing the power loading matrix W , although its

knowledge may be assumed in mobile communications under some

level of coordination. More specifically, we propose to minimize the

following cost function:

f(R̂s, Â, Ŵ ) = ‖Rx − R̂x‖
2
F = ‖E‖2F (14)

where

R̂x = R̂s ×1 Â×2 Ŵ ×3 Â
∗
×4 Ŵ

∗
(15)

Let [Rs](1) ∈ C
M×M3

, [Rs](2) ∈ C
M×M3

, [Rs](3) ∈ C
M×M3

e [Rs](4) ∈ C
M×M3

be the unimodal unfoldings of the sources’

covariance tensor Rs ∈ C
M×M×M×M . Likewise, [Rx](1) ∈

C
K×P2K , [Rx](2) ∈ C

P×PK2

, [Rx](3) ∈ C
K×P2K , [Rx](4) ∈

C
P×PK2

are the unimodal unfoldings of the spatio-temporal data

covriance tensor. We have

[Rx](1) = A[Rs](1)(W
∗ ⊗A

∗ ⊗W )T , (16)

[Rx](2) = W [Rs](2)(W
∗ ⊗A

∗ ⊗A)T , (17)

[Rx](3) = A
∗[Rs](3)(W

∗ ⊗W ⊗A)T , (18)

[Rx](4) = W
∗[Rs](4)(A

∗ ⊗W ⊗A)T . (19)

From these matrix unfoldings, four LS estimation steps can be

derived to estimate A, W , A∗ and W ∗, respectively. Note,

however, that the sources’ covariance matrix Rs is assumed to be

unknown, and should also be estimated. This can be done from

the multimode spatio-temporal covariance matrix. Applying the

property (2) to (9) we get

vec(Rmm) =
[

(W ⋄A)∗⊗(W ⋄A)
]

vec(Rs) ∈ C
P2K2×1

. (20)

From (20), an estimate of vec(Rmm) can be extracted in the LS

sense. We propose to estimate all the unknown quantities in a

alternating way. The common solution relies on the alternating

least squares (ALS) procedure [17, 18], which allows to iteratively

solve these LS estimation steps. The proposed algorithm consists

in estimating at each time, a given factor matrix by fixing the other

matrices to their values obtained at previous estimation steps. The

so-called ALS-Tucker4 algorithm proposed to solve the blind spatial

signature estimation problem is detailed as follows:

ALS-Tucker4 algorithm for blind spatial signature estimation

1. Set i = 0; Randomly initialize R̂
(i=0)

s , Â(i=0), B̂(i=0),

Ĉ(i=0) = Â
∗

(i=0), D̂(i=0) = B̂
∗

(i=0);

2. From R̂
(i=0)

s construct the unimodal matrix unfoldings

[R̂
(i=0)

s ](1), [R̂
(i=0)

s ](2), [R̂
(i=0)

s ](3), [R̂
(i=0)

s ](4);

3. i = i+ 1;

4. Using [Rx](1), find an LS estimate of Â(i):

Â(i) = [Rx](1)

[

[R̂
(i−1)

s ](1)(D̂(i−1) ⊗ Ĉ(i−1) ⊗ B̂(i−1))
T

]†

;

5. Using [Rx](2), find an LS estimate of Ŵ (i):

B̂(i) = [Rx](2)

[

[R̂
(i−1)

s ](2)(D̂(i−1) ⊗ Ĉ(i−1) ⊗ Â(i))
T

]†

;

6. Using [Rx](3), find an LS estimate of Ĉ(i):

Ĉ(i) = [Rx](3)

[

[R̂
(i−1)

s ](3)(D̂(i−1) ⊗ B̂(i) ⊗ Â(i))
T

]†

;

7. Using [Rx](4), find an LS estimate of D̂(i):

D̂(i) = [Rx](4)

[

[R̂
(i−1)

s ](4)(Ĉ(i) ⊗ B̂(i) ⊗ Â(i))
T

]†

;

8. Construct the following Khatri-Rao products:

Ẑ1(i) = B̂(i) ⋄ Â(i); Ẑ2(i) = D̂(i) ⋄ Ĉ(i);

9. From the multimode covariance matrix Rmm in (9),

find an estimate of R̂
(i)

s from the following steps:

q̂(i) =
[
Ẑ2(i) ⊗ Ẑ1(i)

]†
vec(Rmm);

Q̂(i) = unvecPK×PK(q̂(i));
for m = 1 : M

R̂
(i)

s (:,m, :, m) = diag(Q̂(i)(:,m));
end

10. From R̂
(i)

s obtain the unfolded matrices [R̂
(i)

s ](1),

[R̂
(i)

s ](2), [R̂
(i)

s ](3), [R̂
(i)

s ](4);

11. Repeat steps 3-10 until convergence;

Let e(i) , ‖Rx − R̂
(i)

x ‖2F be the residual error at the i-th iteration,
obtained from the original and reconstructed covariance tensors.

Convergence of the algorithm at the i-th iteration is declared when

|e(i) − e(i−1)| ≤ 10−6. After convergence, the final estimate of the

spatial signature matrix is given by averaging over the 1-mode and

3-mode factor matrices:

Âfinal =
Â+ Ĉ

∗

2
.
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Remark: Note that Â can be obtained with good accuracy

(comparable to the proposed method) by fitting a PARAFAC model

to the received data tensor according to (5). However, for a large

number N of snapshots the proposed method is preferable since its

computational complexity is independent of N .

4. NUMERICAL RESULTS

We present some computer simulation results for performance

evaluation. First, we compare the performance of the proposed

method using the ALS-Tucker4 algorithm with that of the

ALS-PARAFAC algorithm proposed in [8]. Note that the latter

method imposes a (known) diagonal structure on sources’ covariance

matrices. Our aim is to show the effectiveness of the proposed

tensor method to work with actual sample covariance matrices

computed over a finite (sometimes small) number of snapshots.

Comparisons with classical MUSIC and ESPRIT methods, and with

the Cramér-Rao lower bound (CRLB) of the classical model [19]

are also shown as a reference. We assume BPSK modulation for all

sources and the results represent an average over 1000 Monte Carlo

runs. The normalized mean square error (NMSE) of the estimated

spatial signature matrix is shown as a function of the signal to noise

ratio (SNR). A uniform linear array (ULA) is considered at the

receiver.

Figure 2 depicts the NMSE performance for different values of

Ns, for a scenario with M = 4, K = 3 and P = 25. The sources

angle of arrival are θ1 = 21.2◦, θ2 = 37.5◦, θ3 = 56.3◦ and θ4 =
77.4◦. In this experiment, the power loading matrix is assumed to

be known. It can be seen that the ALS-Tucker4 method outperforms

the ALS-PARAFAC one in all cases. The floor exhibited by the

ALS-PARAFAC method is directly related to the modeling errors

due to the assumption of a perfectly diagonal sources’ covariance

matrix. Therefore, when working with actual sample covariances

the proposed method is preferable. Figure 3 shows the root mean

square error (RMSE) of the estimated directions of arrival (extracted

from the spatial signature estimates), for a scenario with M = 2,

K = 6, Ns = 40 and P = 25. The sources angle of arrival are

θ1 = 28.2◦ , θ2 = 54.3◦. Note that the proposed method presents an

improved performance over MUSIC and ESPRIT methods working

under the same conditions, while being closer to the CRLB.

In Figure 4, we consider a more challenging scenario with a

smaller number of sensors (K = 4), compared to the previous

experiment. Additionally, we also show the results obtained when

the power loading matrix is assumed to be unknown. Some

degradation is observed when the power loading matrix is unknown,

especially for medium-to-high SNR values in the simulated range.

Nevertheless, our approach still presents the best performance, being

more attractive than the competing methods in the low SNR range.

5. CONCLUSIONS

A fourth-order tensor-based method has been proposed for the

blind estimation of spatial signatures, by exploiting a Tucker4

decomposition of the spatial-temporal covariance tensor. The

proposed method does not require any knowledge on the propagation

channel, array manifold and sources’ covariance structure. Although

the first two properties are also shared by existing blind methods, the

distinguishing feature of our approach is its efficiency in treating the

case where the sources’ covariance matrix is unknown and possibly

non-diagonal, which is the case when working with actual sample

data covariances computed from a finite number of snapshots.
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Compared with classical matrix methods (MUSIC, ESPRIT), the

gains of the proposed tensor method are more evidenced when

working with a smaller number of sensors and under lower SNRs.
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