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ABSTRACT

This paper addresses the problem of detecting an unknown
rank-one signal using multiple receivers that are uncalibrated
in the sense that they each apply an unknown scaling to the re-
ceived signal, and their respective noise powers are unknown.
This problem has been addressed for the case in which the
unknown signal can be modeled as a Gaussian random vec-
tor. However, that assumption is not applicable to some sig-
nal types, such as the constant modulus signals found in radar
and communications. For these problems, the signal can be
modeled as a deterministic unknown, which is the approach
taken here. We derive a generalized likelihood ratio test for
this problem under a low signal-to-noise ratio (SNR) assump-
tion. The resulting detector is invariant to relative scalings of
the data, and therefore possesses the constant false alarm rate
(CFAR) property with respect to the unknown noise powers.
Numerical examples show the proposed detector can outper-
form CFAR detectors derived under the Gaussian assumption.

Index Terms— CFAR Detection, Generalized Likelihood
Ratio Test, Multichannel Signal Detection, Rank-One Signal
Detection, Noise Power Uncertainty

1. INTRODUCTION

The detection of a common but unknown signal within multi-
ple receiver channels is a problem that arises in many applica-
tions, such as passive source localization, spectrum sensing,
and passive radar [1–7]. In each case, the measurement model
for the jth receiver can be written as

sj = µj u + nj , (1)

where sj ∈ CL×1 is the observation, µj is a complex
coefficient representing channel and receiver effects, and
u ∈ CL×1 is the unknown signal. The noise vector nj is
assumed to be a realization of a zero-mean circular complex
Gaussian random process that is independent across receivers.
Note that in some applications the model in (1) is obtained
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only after applying a unitary linear transform to align the
received data (e.g., in delay and Doppler) [6, 7].

When the unknown signal can be modeled as a zero-mean
circular complex Gaussian random vector, detection can be
performed by discriminating between the presence or absence
of correlation between measured signals [1–4]. The result-
ing detectors are defined in terms of the coherence matrix,
Ĉ ∈ CNr×Nr , where Nr is the number of receivers, and the
jkth element of Ĉ is the sample correlation coefficient be-
tween the jth and kth measured signals, i.e.,

[
Ĉ
]
jk

=
sHj sk

‖sj‖‖sk‖
. (2)

Leshem et al. showed that |Ĉ|, i.e., the determinant of Ĉ,
is the generalized likelihood ratio test (GLRT) for detection
of temporally-uncorrelated Gaussian signals with arbitrary
non-diagonal spatial covariance [2]. We note that Cochran et
al. had previously used a geometric argument to formulate an
equivalent statistic referred to as generalized coherence [1].
When the signal subspace is rank-one, the spatial covariance
is diagonal-plus-rank-one, and this additional structure can be
exploited to improve detection performance. Lopez-Valcarce
et al. considered this problem under low signal-to-noise ratio
(SNR) conditions. The resulting GLRT was shown to be
‖Ĉ‖2, i.e., the spectral norm of Ĉ [3]. Ramirez et al. con-
sidered the same problem under close hypotheses conditions,
i.e., low-SNR and low sample support [4]. They showed that,
irrespective of signal rank, the locally-most powerful invari-
ant test (LMPIT) is ‖Ĉ‖F , i.e., the Frobenius norm of Ĉ. All
three statistics, i.e., |Ĉ|, ‖Ĉ‖2, and ‖Ĉ‖F , are invariant to
arbitrary scaling of each receiver channel. Consequently, they
are constant false alarm rate (CFAR) with respect to unknown
and possibly unequal receiver noise powers.

The Gaussian signal assumption on which the previous
detectors are based is a good assumption for many signal
types. However, it is not a suitable approximation for some
signal types, such as the constant modulus signals commonly
encountered in radar and communications applications. In
such cases, it is appropriate to model the signal as a deter-
ministic unknown. Besson et al. [5] considered this problem
when the noise powers are equal but unknown. The result-
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ing GLRT was shown to be ‖G‖2/tr(G), where tr(·) de-
notes the trace, and G ∈ CNr×Nr is the Gram matrix whose
jkth element is given by

[
G
]
jk

= 1
L sHj sk. No comparable

result exists for the case in which the unknown noise powers
are unequal, which is frequencly encountered in practice.

This paper addresses CFAR detection of an unknown
rank-one signal using multiple receivers with unknown-
unequal noise powers. The GLRT is derived under a low
SNR assumption. Comparison to other known GLRTs sug-
gests that this detector should perform well at all SNRs,
and numerical examples support this conclusion. Numer-
ical examples also demonstrate that the proposed detector
can outperform other CFAR detectors at detecting constant
modulus signals in unknown-unequal noise power scenarios.

2. DERIVATION

Detection may be formulated as a binary hypothesis test be-
tween alternative (H1) and null (H0) hypotheses:

H1 : sj = µj u + nj

H0 : sj = nj
(3)

for j = 1 . . . Nr. Let s = [sT1 . . . s
T
Nr

]T ∈ CNrL denote
the vector of concatenated receiver measurements. Also, let
µ = [µ1 . . . µNr

]T ∈ CNr and σ = [σ1 . . . σNr
]T ∈ RNr ,

where σ2
j is the noise power associated with the jth receiver.

The transmit signal u and channel coefficients µ are consid-
ered deterministic unknowns. Consequently, assuming inde-
pendence of the receiver noise across receivers, the condi-
tional density of s underH1 is

p1(s|u,µ,σ)=
exp
{
−∑Nr

j=1
1
σ2
j
‖sj−µju‖2

}

∏Nr

j=1(πσ2
j )L

. (4)

The conditional density of s under H0, p0(s|σ), is given by
(4) for µ = 0Nr

, i.e., p0(s|σ) = p1(s|u,0Nr
,σ), where 0Nr

denotes the length-Nr zero vector.
Define `1(u,µ,σ|s) , log p1(s|µ,u,σ) and `0(σ|s) ,

log p0(s|σ) so that the log generalized likelihood ratio (GLR)
can be written as

max
{u,µ,σ}

`1(u,µ,σ|s)−max
{σ}

`0(σ|s). (5)

To maximize the second term in (5), note that

`0(σ|s) = −L
Nr∑

j=1

log(πσ2
j )−

Nr∑

j=1

1
σ2
j
‖sj‖2. (6)

Setting the partial derivative with respect to σ2
j equal to zero

and solving for σ2
j yields the maximum likelihood estimate

(MLE) of σ2
j underH0, i.e.,

σ̂2
j = 1

L‖sj‖2. (7)

Substituting (7) for σ2
j in (6), and simplifying, gives

`0(σ̂|s) = −NrL− L
Nr∑

j=1

log
(
π‖sj‖2/L

)
, c0. (8)

To maximize the first term in (5), note that

`1(u,µ,σ|s) = −L
Nr∑

j=1

log(πσ2
j )−

Nr∑

j=1

1
σ2
j
‖sj−µju‖2. (9)

The maximum likelihood estimate of µj is the least-squares
solution to uµj = sj , which is

µ̂j =
uHsj
‖u‖2 . (10)

Substituting (10) for µj in (9), and simplifying, gives

`1(u, µ̂,σ|s) = −L
Nr∑

j=1

log(πσ2
j )−

Nr∑

j=1

1
σ2
j
‖P⊥u sj‖2, (11)

where P⊥u = I− uuH

‖u‖2 is the projection matrix into the orthog-
onal complement of u. Setting the partial derivative of (11)
with respect to σ2

j equal to zero, and solving for σ2
j , yields the

MLE
σ̂2
j = 1

L‖P⊥u sj‖2. (12)

Substitution of (12) into (11) leads to an intractable maxi-
mization problem over u. However, under low-SNR condi-
tions the majority of the signal energy falls outside the signal
subspace, i.e., ‖P⊥u sj‖2 ≈ ‖sj‖2. In this case, (11) is well
approximated by (6), and

σ̂2
j ≈ 1

L‖sj‖2, (13)

which is equivalent to the MLE of σ2
j under H0 in (7). Sub-

stituting (13) into (11) and simplifying gives

`1(u, µ̂, σ̂|s) = c0 +
uHΦ̂Φ̂Hu

‖u‖2 , (14)

where Φ̂ = ΦΣ̂−1 ∈ CL×Nr , Φ=[s1 . . . sNr
]∈CL×Nr , Σ̂ =

diag(σ̂) ∈ CNr×Nr is the diagonal matrix formed from the
elements of σ̂. Let γ1(·) denote the eigenvector associated
with ‖ · ‖2. Then, the Rayleigh quotient in (14) achieves its
maximum value, ‖Φ̂Φ̂H‖2, when u = γ1

(
Φ̂Φ̂H

)
. Therefore

the MLE of u is û = γ1

(
Φ̂Φ̂H

)
, and (14) becomes

`1(û, µ̂, σ̂|s) = c0 + ‖Φ̂Φ̂H‖2. (15)

Since ‖Φ̂Φ̂H‖2 = ‖Φ̂HΦ̂‖2, and expanding Φ̂ as ΦΣ̂−1, (15)
may be expressed as

`1(û, µ̂, σ̂|s) = c0 + L ‖Σ̂−1GΣ̂−1‖2, (16)

where G= 1
LΦHΦ∈CNr×Nr . Substituting (8) and (16) into

(5), the resulting low-SNR GLRT is

‖Σ̂−1GΣ̂−1‖2
H1

≷
H0

κ1, (17)

where κ1 is a suitably chosen threshold.
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3. DISCUSSION

Fig. 1 summarizes existing GLRT detectors in relation to (17)
according to their respective noise power assumptions. Note
that σ2 and Σ denote the true noise variance and covariance,
respectively. The GLRT for the known-equal case is derived
in [8] for the Gaussian signal model, and in [6] for the de-
terministic unknown signal model. Both can be extended to
the known-unequal case by a straightforward application of
whitening. The unknown-equal case was also derived in [8]
for the Gaussian signal model, and in [5] for the deterministic
unknown signal model. The unknown-unequal case is derived
for low SNR conditions in [3] for the Gaussian signal model,
and in (17) for the deterministic unknown signal model.

The similarity between all four test statistics is immedi-
ately apparent, i.e., each test statistic is the spectral norm of a
normalized Gram matrix G, where the normalization depends
on the noise power assumptions. This normalization has the
effect of whitening the received signals to unity noise power.
Note that the jkth element of Σ̂−1GΣ̂−1 is given by

[
Σ̂−1GΣ̂−1]jk =

1

L

(
sj
σ̂j

)H(
sk
σ̂k

)
=

sHj sk

‖sj‖‖sk‖
. (18)

This is equivalent to the jkth element of the coherence matrix
Ĉ in (2), which is fundamental to the CFAR detectors derived
under the Gaussian signal assumption that were discussed in
Sec. 1. The similarity in form between all four detectors sug-
gests that (17) should perform comparatively well under both
low and high SNR conditions.

Despite the fact that their test statistics take the same form,
there are still significant differences between the GLRTs un-
der deterministic unknown and Gaussian signal formulations.
Since the distribution of a statistic depends on the underlying
signal model, the distribution of a given statistic will differ
under H1 between formulations. More precisely, under H1

and the zero-mean Gaussian signal model, the matrix G is a
central complex Wishart matrix of order L, while under H1

and the deterministic unknown signal model, the matrix G
is a non-central complex Wishart matrix of order L with a
rank-one noncentrality. On the other hand, the distribution of
a given statistic is the same under H0 for both formulations.
More precisely, under H0 and both signal formulations, G
is a central complex Wishart matrix. This implies the same
threshold can be used for both formulations, as the threshold
depends only on the statistic distribution underH0. However,
the probability of detection curves will differ between formu-
lations, as these depend on the statistic distribution underH1.

We also note that the LMPITs under close hypotheses of
[4], which were derived assuming vector observations at each
receiver and Gaussian received signals, reduce to the statistics
shown in Fig. 2 for scalar observations. These are closely re-
lated to the CFAR GLRTs in Fig. 1, namely, they are identical
except that they are expressed in terms of the Frobenius norm
rather than the spectral norm. As discussed in [4], this reflects

Equal
(σj=σk)

Unequal
(σj 6=σk)

σ Known ‖ 1
σ2 G‖2 ‖Σ−1GΣ−1‖2

σ Unknown ‖ 1
σ̂2 G‖2 ‖Σ̂−1GΣ̂−1‖2

Fig. 1. Comparison of GLRT detectors under different noise
cases for both the deterministic unknown and Gaussian signal
model formulations.

Equal
(σj=σk)

Unequal
(σj 6=σk)

σ Unknown ‖ 1
σ̂2 G‖F ‖Σ̂−1GΣ̂−1‖F

Fig. 2. LMPIT detectors under close hypotheses (low-SNR
and/or low sample support) for the Gaussian signal model [4].

a distinction in how each detector treats knowledge of the sig-
nal subspace rank, i.e., the spectral norm exploits knowledge
of the rank-1 signal subspace, while the Frobenius norm ig-
nores this knowledge because of difficulty in estimating the
signal subspace under close hypotheses. In the following sec-
tion, we compare the unknown-unequal LMPIT and GLRT
detectors via numerical simulation, and comment on the de-
sirability of utilizing the signal subspace rank when detecting
non-Gaussian rank-one signals.

4. SIMULATIONS

This section compares the detection performance of the
unknown-unequal GLRT, ‖Σ̂−1GΣ̂−1‖2, with the perfor-
mance of other detectors that are CFAR with respect to
unknown-unequal noises and derived under the Gaussian sig-
nal assumption, namely, generalized coherence |Σ̂−1GΣ̂−1|,
and the LMPIT ‖Σ̂−1GΣ̂−1‖F . For compactness, the
following discussion uses coherence matrix notation, i.e.,
C = Σ−1GΣ−1 and Ĉ = Σ̂−1GΣ̂−1. A scenario with
Nr = 6 distributed receivers and varying length received sig-
nals is considered. A constant-modulus signal u is randomly
chosen on each H1 trial according to u = exp{iθ}, where
θ ∈ RL×1 is a phase vector with i.i.d. elements uniformly
distributed on [0, 2π], such that ‖u‖2 = L. This signal is
chosen because it is non-Gaussian and resembles phase mod-
ulated radar and communications waveforms. The coefficient
vector µ is also chosen randomly on eachH1 trial from a cir-
cular Gaussian distribution, µ ∼ CN (0Nr

, INr
), and scaled

to achieve a desired SNRavg, defined by

SNRavg =
1

Nr

Nr∑

j=1

SNRj , (19)

where SNRj = |µj |2/σ2
j is the input SNR at the jth receiver.

Detection thresholds are set empirically using 105 Monte
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Carlo trials under H0 to achieve a false alarm probability
Pfa = 10−3. Note that these H0 Monte Carlo trials may
be performed for each CFAR statistic using σ = 1Nr

due
to the invariance of these statistics to independent scaling of
each received signal. Probability of detection (Pd) curves
are calculated using 104 Monte Carlo trials for each value of
SNRavg. Finally, unequal receiver noise powers are chosen as
[σ2

1 , σ
2
2 , . . . , σ

2
6 ] = [1, 2, 3, 4, 5, 6]× 10−6.

Fig. 3 depicts Pd curves for the CFAR detectors as the
signal length L is varied over L = {10, 100, 1000}. For com-
parison, the performance of the clairvoyant known-unequal
GLRT, ‖C‖2, is also depicted. The separation between ‖C‖2
and each CFAR detector represents CFAR loss resulting from
noise power uncertainty. This loss decreases with increas-
ing signal length L, which reflects the ability of each de-
tector to better estimate the unknown noise powers at low
SNRs with more measurement data. Among CFAR detec-
tors, the unknown-unequal GLRT, ‖Ĉu‖2, is more sensitive
than both the Gaussian LMPIT, ‖Ĉu‖F , and generalized co-
herence, |Ĉu|, for all considered signal lengths, although the
relative separation of |Ĉu| from the other two decreases with
increasing signal length. In addition, the sensitivity advan-
tage of ‖Ĉu‖2 over ‖Ĉu‖F , though modest, increases with
increasing L.

These results are interesting in light of the fact that only
‖Ĉu‖2 exploits knowledge of the underlying rank-one sig-
nal subspace. Consequently, we conclude that exploiting this
knowledge is beneficial in the detection of rank-one determin-
istic unknown signals under all evaluated signal lengths and
all SNRs that have non-negligible Pd. Nonetheless, the rela-
tive performance of ‖Ĉu‖2 and ‖Ĉu‖F is still consistent with
the conjecture that ‖Ĉu‖F is also the LMPIT under close hy-
potheses for deterministic unknown signals. Indeed, this con-
jectures seems plausible because of the mirror relationship be-
tween GLRTs derived under both signal model formulations,
and the fact that the distinction between distributions under
H1 diminishes with decreasing signal strength.

5. CONCLUSION

In this paper, we proposed a CFAR detector for the detection
of a deterministic unknown signal using multiple uncalibrated
receivers with unknown-unequal receiver noise powers. This
detector is the GLRT under low-SNR conditions, and has a
form that is consistent with GLRTs derived under other noise
power formulations. We also identified the relationship be-
tween GLRTs derived under the deterministic unknown and
Gaussian signal assumptions, which have identical forms but
different probability distributions (and consequently Pd per-
formance) under the target-present hypothesis. The proposed
detector outperformed other CFAR detectors derived for the
Gaussian signal case, including the LMPIT, at all practical
signal lengths and SNRs for an example scenario. Derivation
of a closed form GLRT under all SNR conditions or a LMPIT
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‖Ĉ‖2
‖Ĉ‖F
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Fig. 3. Probability of detection comparisons for different L.

under close hypotheses for an unknown signal with unknown-
unequal receiver noise powers remain open problems.
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