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ABSTRACT

The time difference localization suffers from the performance
deterioration of time delay estimation (TDE) due to the pres-
ence of clock frequency error in incoherent systems. Based
on the modified signal model of TDE, the joint maximum-
likelihood (ML) estimation of time delay and system clock
frequency error is proposed. Then, the Cramér-Rao lower
bounds (CRLBs) of time delay and clock frequency error esti-
mations are given. The performance of time delay estimation
may be significantly improved to approach CRLB by pro-
posed method. Further, the accuracy of proposed time de-
lay estimator is unaffected by performance of system clock in
moderate condition, that is verified by simulation results.

Index Terms— Time delay estimation (TDE), Local os-
cillator (LO), Time difference of arrival (TDOA).

1. INTRODUCTION

Time delay estimation (TDE) has many applications such as
target localization and tracking in sonar or radar systems. In
the past few decades, lots of TDE methods are proposed,
such as [1–7]. Most of these methods explicitly or implic-
itly assume that the time delay relationship between observed
signals (usually Intermediate Frequency (IF) band or base-
band signals) is identical to the time delay relationship be-
tween radio frequency (RF) signals at antennas of two spa-
tially separated receivers. The above assumption is usually
satisfied when the observed signals are coherently received,
which would require high-cost synchronization equipped in
the receivers. In practice, in order to reduce costs, the incoher-
ent systems unequipped accurate synchronization are usually
employed to measure time delay.

In the incoherent system, the independent local clocks are
equipped at the different receivers respectively, as shown in
Fig. 1. Due to the imperfect consistency of frequency and
phase among local clocks, time delay relation (in IF band or
baseband) is distorted between observed signals after mixing
and sampling. Due to the similarity of problem in IF band
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or baseband time delay estimation, the baseband delay es-
timation is only discussed herein. In baseband time delay
estimation, the frequency and phase offsets between the re-
ceived observed signal and the reference signal is inevitable,
that is due to the independence of two mixing local oscillators
(LOs) respectively at a receiver and other receiver. Further,
time stretch is also caused by independent operating sampling
clocks at a receiver and other receiver, respectively.
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Fig. 1. Incoherent reception in a typical passive system

The contributions of this paper include:
1) An improved signal model of time delay estimation for

incoherent reception is developed. The frequency offset and
time stretch effect incurred by imperfect mixing and sampling
are jointly considered.

2) A joint maximum likelihood (ML) estimation of time
delay and frequency error of system clock is devised.

3) The Cramér-Rao lower bounds (CRLBs) of the pro-
posed joint time delay and clock frequency error estimations
are obtained in the incoherent reception system. It is verified
that the CRLB of time delay estimation is a tighter bound than
that of the coherent reception system.

The following notations are used. Bold face upper and
lower case letter denote matrix and vector respectively. The
superscripts T and H denote transpose and Hermitian trans-
pose respectively. The notations ‖·‖, det{·}, angle{·}, �{·}
and �{·} stand for, respectively, 2-norm, determinant, phase
angle, real-part and imaginary-part.

2. SIGNAL MODEL

In this paper, the following assumptions are adopted.
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Assumption 1. The frequencies of different system clocks
are assumed to be different constants during the observation
interval, respectively.

Assumption 2. The clock’s frequency of the reference re-
ceiver is assumed to equal the nominal frequency. At the other
receiver, the relative frequency deviation η always exists with
respect to nominal value, and it remains unchanged in fre-
quency multiplication or demultiplication for obtain mixing
frequency and sampling frequency. Herein, η Δ

=
fop−fn

fn
with

operating frequency fop and nominal frequency fn.
Assumption 3. The noise-free complex envelope signal

s(t) is assumed to be unknown and deterministic. Moreover,
the additive noise is assumed to be zero-mean complex white
Gaussian, and it is uncorrelated to the envelope signal.

The noise-free RF signals at the two receivers, respective-
ly, may be given by xRF,1(t) = s(t)ej2πfct and xRF,2(t) =
as(t − τ)ej(2πfct+ϕ), where 0 ≤ t ≤ T , τ and ϕ are un-
known differential delay and phase respectively. Herein, dif-
ferential delay is usually known as time difference of arrival
(TDOA) in the passive system. Differential phase is com-
posed by −j2πfcτ and differential phase-shift which arises
when one or both of the RF signals are reflected from some
boundary [8]. According to previous assumptions, the op-
erating mixing frequencies equal to fm and (1 + η)fm at
the reference receiver and auxiliary receiver respectively, and
fm = fc. Thus the baseband signals may be given by

x1(t) = s(t)

x2(t) = as(t− τ)ej(−2πηfmt+ϕ). (1)

From the sampling operating frequency assumption, the
discrete-time baseband signals are given by

x1[n]|Ts
= s[n]|Ts

x2[n]|Tops
= aej(−2πηfmnTops+ϕ) s[n− τ/Tops]|Tops

(2)

wherex[n]|Tops

Δ
= x(nTops), and Tops and Ts denote the sam-

pling operating period and sampling nominal period, respec-
tively. Let β Δ

= η
1+η , D Δ

= τ/Ts. According to the defi-

nition of η in Assumption 2, it is known that β =
fop−fn

fop
.

Hence, β may be viewed as the relative frequency deviation
between the operating frequency and nominal frequency with
respect to normalized frequency fop. And D is the time de-
lay normalized by the sampling period. Under the identical
sampling period Ts, with the additive noise considered, the
baseband observed signals may be respectively rewritten as

x1[n]|Ts
= s[n]|Ts

+ q1[n]|Ts
(3)

x2[n]|Tops
=aej(ϕ−2πβfmnTs) s[(1− β)n−D]|Ts

+ q2[n]|Ts
.

After adopting identical sampling frequency, for the sake of
simplicity, the subscripts about sampling are omitted. Thus,

the observed signal model may be simplified as

x1[n] = s[n] + q1[n]
x2[n] = aej(ϕ−2πβfmnTs)s [(1− β)n−D] + q2[n].

(4)

From the above derivation, it is known that the frequency and
phase offsets are caused by imperfect mixing while the time
stretch is caused by imperfect sampling. Due to the presence
together of the frequency offset and time stretch that originate
from identical frequency error of system clock, the proposed
algorithm is different from the joint estimation of TDOA and
frequency difference of arrival (FDOA) [8–11]. In the form
of the vector, the signal model can be given as

x1 = s+ q1

x2 = aejϕΦsD,β + q2
(5)

where

xi
Δ
=[xi[0], xi[1], · · · , xi[N − 1]]T , i = 1, 2

qi
Δ
=[qi[0], qi[1], · · · , qi[N − 1]]T , i = 1, 2

sD,β
Δ
=[s[(1− β) · 0−D], · · · , s[(1− β) · (N − 1)−D]]T

Φ
Δ
=diag{[e−j2πβfmTs·0 · · · , e−j2πβfmTs·(N−1)]T }. (6)

Herein, diag{x} denotes a diagonal matrix with vector x on
the main diagonal. Note that, sD,β is the time stretched and
delayed replica of the emitted signal vector

s
Δ
= s0,0 = [s[0], s[1], · · · , s[N − 1]]T . (7)

In practice, time stretch and subsample delay may be ap-
proximately implemented by a time-varying finite impulse
response (FIR) filter with 2K+1 taps. The tap weight coeffi-
cient of the FIR is given by samples of sinc function, i.e., the
(n+ 1)th element of sD,β may be approximated as

[sD,β ]n+1 ≈
K∑

k=−K

sinc(k − βn−D)s[n− k],

n = 0, 1, · · · , N − 1 (8)

where sinc(x)
Δ
= sin(πx)

πx .

3. TIME DELAY ESTIMATION

As in passive localization system, the noise-free signal s is as-
sumed to be unknown. Thus, the unknown real vector, com-
posed of the real-part of s, the imaginary-part of s, and the
parameter vector θ Δ

= [D,β, ϕ, a]T is defined as

ϑ = [�{sT },�{sT },θT ]T . (9)

Due to the deterministic (unknown) signal assumption and
zero-mean complex white Gaussian noise assumption, it is
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known that the concatenated vector x = [xT
1 ,x

T
2 ]

T is also a
white Gaussian vector, i.e., x ∼ CN (u,C) with mean and
covariance matrix respectively given by

u(ϑ) = [sT , [aejϕΦsD,β ]
T ]T (10)

C =

[
σ2
1I

σ2
2I

]
(11)

where σ2
1 and σ2

2 denote the variances of q1 and q2 respec-
tively. Therefore, the maximum likelihood (ML) probability
density function is given by

p(x;ϑ) =
1

πN det{C}
· exp (−(x− u(ϑ))HC−1(x− u(ϑ))

)
. (12)

To obtain the ML estimate of the unknown parameters, we
maximize the log of the likelihood function (12), which may
be demonstrated to be equivalent to maximizing

L1(ϑ) = L2(θ)− L3(ϑ) (13)

where L2(θ) and L3(ϑ) are given in (14) and (15) respective-
ly.

L2(θ) =
1

σ2
2 + a2σ2

1

xH
1 x1 +

a2

σ2
2 + a2σ2

1

x̄H
2 x̄2

+
2a

σ2
2 + a2σ2

1

Re
{
xH
1 (e−jϕΦ̄x̄2)

}
. (14)

The observed data x̄2 and diagonal matrix Φ̄ are given by

[x̄2]i = x2[(i− 1 +D)/(1− β)], i = 1, 2, · · · , N, (16)

[Φ̄]i,i = e−j2πβfmTs(i−1+D)/(1−β), i = 1, 2, · · · , N. (17)

According to (13), it is known that maximization of L1(ϑ)
is equivalent to maximization of L2(θ) with minimization of
L3(ϑ). It is obvious that L3(ϑ) ≥ 0 according to (15). Thus,
the estimate of the unknown signal s may be given as

ŝ(θ) =
σ2
2

σ2
2 + a2σ2

1

x1 +
aσ2

1e
−jϕ

σ2
2 + a2σ2

1

Φ̄H x̄2 (18)

while L3(ϑ) = 0. It is obvious that the unknown signal esti-
mate is dependent on the unknown parameter θ. In addition,
according the assumption that the envelope signal and noise is
uncorrelated, x̄H

2 x̄2 may be approximated as a2sHs+σ2
2 , i.e.,

x̄H
2 x̄2 is a approximately constant. Thus, the maximization of

L2(θ) is equivalent to the maximization of the third term on
the right-hand side of the equal sign in (14). Therefore, the
joint estimation may be obtained by maximizing

L(D,β, ϕ) = �
{
e−jϕxH

1 Φ̄H x̄2

}
= A(D,β, ϕ) cos(α− ϕ). (19)

where

A(D,β, ϕ) = |e−jϕxH
1 Φ̄H x̄2| = |xH

1 Φ̄H x̄2| (20)

α = angle{xH
1 Φ̄H x̄2}. (21)

Thus, maximizing L(D,β, ϕ) is reduces to the maximizing
A(D,β, ϕ) on condition of cos(α − ϕ) = 1. It is obvious
that the value of A(D,β, ϕ) is only related to D and β. Thus,
the differential delay and relative frequency deviation may be
obtained via two-dimensional (2D) grid searches, i.e.,

[D̂, β̂] = argmax
D,β

{|xH
1 Φ̄H x̄2|}. (22)

And ϕ may be estimated by ϕ̂ = α̂ where α̂ may be ob-
tained by substituting D̂ and β̂ into (21). Herein, β̂ and ϕ̂
may be used to compensation clock frequency and phase er-
rors. However, estimation of nuisance parameter a and source
signal s are omitted.

4. CRAMÉR-RAO LOWER BOUND

When the relative frequency deviation is moderate small, the
CRLBs on the estimations of D and β in incoherent reception
may be obtained with detailed mathematical manipulations
omitted,1

CRLB1(D) =
a2σ2

1 + σ2
2

2a2
· γ

γṡH ṡ− κ
(23)

CRLB1(β) =
a2σ2

1 + σ2
2

2a2
· ν

γṡH ṡ− κ
(24)

where γ, ν, and κ are given in (25)-(27) respectively.

γ
Δ
=
∥∥(ṡHN− 2πfmTss

H
D,βN)

∥∥2 sHD,βsD,β

− (
�{ṡHNsD,β} − 2πfmTss

H
D,βNsD,β

)2
. (25)

ν
Δ
= ṡH ṡsHD,βsD,β −�{ṡHsD,β}�{ṡHsD,β}. (26)

Herein, N Δ
= diag{[0, 1, · · · , N − 1]T } and ṡ

Δ
=

∂sD,β

∂n . The
CRLB on time delay estimation in coherent reception is given
as [11]

CRLB2(D) =
a2σ2

1 + σ2
2

2a2
1

ṡH ṡ
. (28)

Thus, the relationship between of the two CRLBs on time
delay estimation is given by

CRLB1(D) = ξ · CRLB2(D) (29)

where the degradation coefficient ξ is defined as

ξ =
ṡH ṡ

ṡH ṡ− κ/γ
. (30)

And it may be readily proved that ξ ≥ 1, i.e., CRLB1(D) ≥
CRLB2(D).1

1The details is given in the extended paper.

3003



L3(ϑ) =
σ2
2 + a2σ2

1

σ2
1σ

2
2

∥∥∥∥
(

σ2
2

σ2
2 + a2σ2

1

x1 +
aσ2

1e
−jϕ

σ2
2 + a2σ2

1

(Φ̄H x̄2)

)
− s

∥∥∥∥
2

. (15)

κ
Δ
=

∥∥�{ṡHsD,β}(ṡHN− 2πfmTss
H
D,βN)− sHD,β(ṡ

HNṡ− 2πfmTs�{ṡHNsD,β})
∥∥2 . (27)

5. SIMULATION RESULTS

In the following numerical experiments, it is assumed that
digital baseband signal is produced by mixing and sampling
of FM signal with carrier frequency fc = 101.7MHz, i.e.,

s[n] = exp

{
j · Δf sin(2πfbnTs)

fb

}
, n = 0, 1, · · · , N − 1.

The sampling period Ts = 4μs, modulated signal’s frequency
fb = 100Hz, frequency modulation deviation Δf = 50kHz,
data length N = 2048, the actual time delay D = 3.2Ts,
ϕ = 1.2rad. In addition, signal noise ratios (SNRs) of two
observed signal are assumed to be identical, with SNR is de-
fined as SNR

Δ
= a2σ2

s

/
σ2
1 , where σ2

s denotes power of noise-
free signal ejϕΦsD,β . And the mean square errors (MSEs)
are obtained by 500 independent trials in all simulations.
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Fig. 2. (a) MSE of D̂, (b) MSE of β̂. (η = 2× 10−7)

The MSEs of D̂ and β̂ are illustrated in Fig. 2(a) and
Fig. 2(b) respectively. It is obvious that the proposed method
significantly outperforms the cross-correlation (CC) [1] and
the parametric generalized cross-correlation (PGCC) method-
s [12]. Moreover, the proposed method behaves even better
than CC with clock frequency error compensation.2 The M-
SEs of D̂ and β̂ approach the respective CRLBs in moderate
SNRs. In addition, under low SNRs environment, the MSEs
is almost unchanged due to grid search area that is fixed in
simulations.

As illustrated Fig. 3, the delay estimation accuracy of the
proposed method is almost invariant along with the variation

2In the CC with error compensation, the clock frequency error is estimat-
ed by searching the position which corresponds to frequency domain corre-
lation peak.

of relative frequency derivation η, but the delay estimation
MSE of the traditional CC method increases with absolute
value of relative frequency derivation. Hence, the low cost
local clock, which usually provide bad frequency accuracy,
may be equipped when proposed method is employed in time
delay estimation system.
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Fig. 3. MSE of D̂ with different relative frequency derivation
of local clock (SNR=10dB,D = 3.2Ts)

6. CONCLUSION

The time delay estimation is investigated in the presence of
system clock frequency error, Under the deterministic signal
and white gaussian noise assumption, the joint ML estimation
of time delay and clock frequency error is proposed. Further,
the CRLB on time delay estimation is given under the inco-
herent reception. The accuracy of time delay estimation is
unaffected by the magnitude of clock frequency error when
the proposed method is employed in incoherent systems, that
may be not achieved with traditional methods. In addition, the
improved accuracy of proposed method are also confirmed by
simulation results.
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