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ABSTRACT

Hidden Markov models (HMMs) are becoming the domi-
nant approach for text-to-speech synthesis (TTS). HMMs
provide an attractive acoustic modeling scheme which has
been exhaustively investigated and developed for many years.
Modern HMM-based speech synthesizers have approached
the quality of the best state-of-the-art unit selection systems.
However, we believe that statistical parametric speech syn-
thesis has not reached its potential, since HMMs are limited
by several assumptions which do not apply to the properties
of speech. We, therefore, propose in this paper to use Lin-
ear Dynamical Models (LDMs) instead of HMMs. LDMs
can better model the dynamics of speech and can produce a
naturally smoother trajectory of the synthesized speech. We
perform a series of experiments using different system con-
figurations to check on the performance of LDMs for speech
synthesis. We show that LDM-based synthesizers can outper-
form HMM-based ones in terms of cepstral distance and are
a very promising acoustic modeling alternative for statistical
parametric TTS.

Index Terms— Statistical parametric speech synthesis,
Linear dynamical model, Kalman filter

1. INTRODUCTION

The dominant methods in statistical parametric speech syn-
thesis are based on hidden Markov models (HMMs). Natural
sounding speech has been synthesized with HMMs and the
quality of the best HMM-based synthesis systems approaches
the quality of the best unit selection synthesis systems [1].
However, although HMMs can be a relatively efficient mod-
eling scheme for speech, they suffer from a number of limi-
tations that have been pointed out in the literature[2, 3]. The
HMM limitations derive from assumptions such as: a) condi-
tional independence of observations given the state sequence
and b) speech statistics of each state do not change dynam-
ically. A simple mechanism for capturing time dependence
is to augment the observation space with feature derivatives
under the false frame-independence assumption. This mecha-
nism was further improved by the trajectory HMM [3], which
impose relationships between static and dynamic feature vec-
tor sequences. Alternatively, a variety of models have also

been proposed to explicitly capture the dynamics of speech,
e.g. [4, 2, 5, 6].

It is our belief that improving the HMM modeling scheme
has reached its limits and we need to investigate novel acous-
tic models in order to make considerable progress in statistical
speech synthesis. We therefore examine in this work an en-
tirely different model, the Linear Dynamical Models (LDMs)
(also known as Kalman filter models) for speech synthesis.
LDMs are probabilistic, state space models, which explicitly
model some of the dynamics of speech and introduce the con-
tinuity and context dependence needed for good quality syn-
thesis. Temporal dynamics is modeled as a smooth, contin-
uous motion in a hidden state space, which is then projected
onto the observation space.

One of the attractive properties of these models is that they
may readily be trained via the EM algorithm in a maximum
likelihood framework [4]. Although LDMs have been used
in speech recognition in the past there is only a single effort
utilizing them in speech synthesis by Quillen [7]. However,
the work in [7] is only a preliminary effort which we further
extend. Specifically in this work, the spectral envelope of
speech is modeled with LDMs and a number of design and
algorithmic choices have been evaluated.

This paper is organized as follows. Section 2 gives an
outline of LDMs; Section 3 shows how LDMs can be used
for statistical parametric synthesis; in Section 4 we present
some experiments; and in Section 6 we conclude this paper.

2. LINEAR DYNAMICAL MODELS

The LDMs are the simplest dynamical models with continu-
ous state vectors. The state evolution process is a linear first-
order Gauss-Markov random process while the observation
process is a factor analyzer. The output of the process follows
a time-varying multivariate Gaussian distribution. An LDM
can be specified by the following equations:

x0 ∼ N (µ0,Σ0) (1a)
xk+1 = Fkxk +wk, wk ∼ N (µs

k,Qk) (1b)
yk = Hkxk + vk, vk ∼ N (µo

k,Rk) (1c)

where Fk is a n×n state transition matrix andHk is a m×n
observation matrix. The state x is an n-dimensional vector
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which evolves according to linear difference equation (1b),
with initial condition x0. The state cannot be observed di-
rectly. Instead, m-dimensional measurements y are available
at discrete sampling times as described by (1c). The vec-
tors wk and vk are called state evolution noise and obser-
vation noise respectively and are independent of each other
and temporally uncorrelated (i.e., E[wkw

>
l ] = Qkδkl and

E[vkv
>
l ] = Rkδkl, where δkl is the Kronecker delta).

3. LDM APPLIED TO SPEECH SYNTHESIS

3.1. Parameter estimation

Equation (1) defines a time varying system and this formula-
tion may introduce too many parameters. By assuming that
within sub-phone segments the output distribution evolves in
a linear, continuous fashion, the parameters can be set to the
same values (i.e., Fk = F ,Hk = H , . . . for all samples of a
segment). Non-linearities in the output distribution are incor-
porated at segment boundaries where the parameters change.
To ensure that the state process remains continuous through
such shifts, first and second order state statistics should be
passed across segment boundaries. Algorithms 1 and 2 are
high level descriptions of parameter estimation procedures.
The symbol Σk/k−1 refers to the covariance of the predic-
tion error at time k, given k − 1 observations, with Σ1/0 be-
ing a reasonable initial value. Both algorithms have as in-
puts the observations and the corresponding labels and they
calculate the parameters of an LDM model for each label.
In Algorithm 1 the forward and backward recursion are run
in sub-phoneme level, while in Algorithm 2 these recursions
are run in phoneme level. Note that the statistics are passed
within phoneme bounds and the state is passed across a ut-
terance. The equations of the forward and backward recur-
sions (Kalman filter and smoother), of the sufficient statistics
and of the parameters modification step can be found in [4].
These equations assume a single run of output observations.
However, their extension to multiple output runs is simple and
involves summing the sufficient statistics over the different
runs.

Algorithm 1: EM Algorithm - Segment Level

foreach label do
while not converged do

// E-step
zero the statistics variables
foreach segment do

Initialize x0 and Σ1/0 = Σ0

run the forward and backward recursions
accumulate the statistics

// M-step
Update the parameters using the statistics

Algorithm 2: EM Algorithm - Phoneme Level

while not converged do
// E-step
foreach label do

zero the statistics variables
foreach utterance do

Initialize x0

foreach phoneme do
Let L1, L2, L3, L4, L5 be the
sub-phoneme labels

Initialize Σ1/0 = Σ0 of label L1

run the forward and backward recursions
accumulate the statistics per label
x0 = xlast

// M-step
foreach label do

Update the parameters using the corresponding
statistics

3.2. Initialization

Sensible initialization of parameter F of an LDM is crucial,
since the EM solution highly depends on its initial estimate.
When the dimension of the state space is equal to the dimen-
sion of the observation space, then we can assume that ini-
tially xk ≡ yk. Therefore, an initial estimate of F is given
by F = Γ4Γ−1

3 , where

Γ4 =
T−1∑
k=1

yk+1y
>
k −

1
T − 1

T−1∑
k=1

yk+1

T−1∑
k=1

y>k , (2)

Γ3 =
T−1∑
k=1

yky
>
k −

1
T − 1

T−1∑
k=1

yk

T−1∑
k=1

y>k , (3)

and T is the number of observations. This estimate applies
to a single time series but can easily be extended to multiple
experiments case. Parameter H was set to a random matrix.
Another strategy, which is applicable when the state space is
less than or equal to the observation space, is to use subspace
identification methods [8] to estimate F andH . When the di-
mension of the state space is greater than the dimension of the
observation space then the initialization of F requires knowl-
edge of the mapping between the two spaces.

3.3. Constraints

One constraint is enforced during training: The spectral ra-
dius, ρ(F ) of F is constrained to be less than or equal to
one, i.e., ρ(F ) ≤ 1. If ρ(F ) > 1 were allowed, the state
evolution could give a model of exponential growth. Such
behavior may not be apparent over small numbers of frames,
while still introducing an element of numerical instability. In
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this work, two methods of constraining ρ(F ) have been im-
plemented. The first one employs the eigenvalue decompo-
sition, replaces each eigenvalue with magnitude greater than
one with an eigenvalue that has magnitude less than or equal
to one and then reconstructs F . The second method adds in-
equality constraints in the EM auxiliary function and is de-
scribed in [7]. Most of the experiments performed in this
work use the second method, although there is no noticeable
difference in the quality of the synthesized speech if the first
method is used instead.

3.4. Speech parameter generation algorithm

To synthesize speech, a file, that contains sub-phoneme seg-
ment labels and durations, is presented as input. The proposed
model synthesizes an entire utterance at a time by stepping
the following equations for each phoneme of the utterance
according to the duration model:

x1 = ρµ0 + (1− ρ)xprev

yk = Hkxk + µo
k

xk+1 = Fkxk + µs
k

(4)

where 0 ≤ ρ ≤ 1, xprev is the last state of the previous
phoneme and µ0 is the initial state of the current phoneme. In
this work ρ was set to 0.5. The state is passed across all iter-
ations while the parameters Fk, Hk, µo

k and µs
k are chosen

according to the current segment label. The derived features
yk are then used to synthesize a waveform.

4. EXPERIMENTS

4.1. Speech corpus and parameter extraction

The Edinburgh speech synthesis database release for the Hur-
ricane Challenge [9] was used. The training was done using
2551 utterances sampled at 16 kHz, selected from the her-
ald and hvd sets. Full context labels were created by using
the Festival Speech Synthesis [10] frontend. From the train-
ing utterances, 40 mel-cepstral coefficients were extracted
at every 5 ms using the complex cepstrum analysis method
shown in [11]. Mel-cepstral coefficients were regarded as
the minimum-phase cepstrum component of the complex
cepstrum.

4.2. Speech segmentation

Mel-cepstral parameters were used to train a baseline synthe-
sizer based on HMM using state-of-the-art configurations as
follows. Each full context model was represented by a five-
state left-to-right hidden semi-Markov model (HSMM) [12],
and decision tree clustering using minimum description
length criterion was used to cluster HSMM states [13]. In the
end of the clustering, the 340,885 states were tied to produce
965 states, representing a reduction to 0.2%. The observation

vectors were consisted of 40 mel-cepstral coefficients, delta
and delta-delta.

The trained HSMMs were used to segment the database
at the state level using the method described in [14]. Fig. 1
shows the histogram of the 4th mel-cepstral coefficient of the
observations belonging to a given tree leaf. Note that the his-
togram follows approximately a Gaussian distribution. The
terminal nodes of the decision trees and their respective ob-
servations were used to train the LDMs.
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Fig. 1. Histogram of the 4th mel-cepstral coefficient taken
from the observations belonging to a given terminal node of
the decision trees for mel-cepstral coefficients.

4.3. Results

A large number of LDM training configurations were per-
formed and the difference between natural and generated cep-
stra were measured. The differences in terms of LDM train-
ing regarded the following: a) the number of HSMM states
per phoneme considered; b) the state space dimension; c) the
algorithm that is used for the estimation of the parameters
(Algorithm 1 or Algorithm 2); d) whether µo is set to zero;
e) whether µs is set to zero; f) whether Q is diagonal; g)
whether R is diagonal; h) whether the constraint, ρ(F ) ≤ 1,
was applied or not. The evaluation of the models was based
on the mean value of the cepstral distance and the raw PESQ
[15] score metrics, which were applied to 50 randomly se-
lected utterances. The cepstral distance in dB between two
sequences of mel-cepstral coefficients sets is given by

d (c1, c2) =
10

T ln 10

T−1∑
t=0

√√√√ m∑
i=1

[ct,1(i)− ct,2(i)]2, (5)

where ct,1(i) and ct,2(i) are the i-th mel-cepstral coefficient
for the t-frame of the natural and generated sequence of coef-
ficients sets, respectively, with T being the number of frames
and m the cepstrum order. Smaller distances correspond to
better modeling. On the other hand the raw PESQ score mea-
sures the perceptual similarity between the original and the
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Table 1. Cepstral distances and PESQ scores for each of
LDM training methods, represented by models M1, . . . ,M6.
n is the state space dimension. The best measures are high-
lighted in boldface. Cepstral distances are in dB.

Model M1 M2 M3 M4 M5 M6

states 5 5 5 5 5 5
n 40 15 40 40 80 30
Algorithm 1 1 1 1 1 1
µs 6= 0
diagQ X X
diagR X X X

Cep. dist. 5.62 5.62 5.63 5.63 5.63 5.63
PESQ 2.75 2.75 2.74 2.75 2.74 2.74

synthesized waveform and higher scores correspond to better
modeling. To calculate the PESQ scores, speech was synthe-
sized from generated cepstrum, aligned durations, and natural
F0, by passing a simple excitation signal through the mel log
spectrum approximation filter [16].

Tables 1 and 2 show the cepstral distances and PESQ
scores for each training configuration. From the results of the
experiments it is inferred that: a) Algorithm 1 is superior to
Algorithm 2; b) 5 states per full context model seems to lead
to better models than 3 states; c) the µo parameter is neces-
sary; d) the µs parameter should be omitted (i.e., set to zero);
e) one can safely assume that matrix R is diagonal. There-
fore it is possible to use simpler, faster and numerically more
stable inference algorithms such as the sequential Kalman
filtering. As far as the state space dimension is concerned, the
quality of the synthesized speech does not deteriorate if the
state space dimension becomes smaller than the observation
space dimension (up to n = 10). For state space dimension
greater than the observation space dimension more research
is needed before a definite conclusion can be drawn, because
in this case the identifiability issue [17, 18] as well as the data
insufficiency issue have to be addressed.

The mean cepstral distance and PESQ score between nat-
ural and mel-cepstral parameters generated from the HSMMs
are 5.94 dB and 2.41, respectively. Figure 2 shows trajecto-
ries of 2-th mel-cepstral coefficient. The c(2) of LDM (red
line) is closer to true c(2) (blue line) when compared with the
c(2) generated from HSMM (green line).

5. RELATION TO PRIOR WORK

The present results are generally consistent with findings
from a recent study of Quillen [7] employing LDMs in speech
synthesis. However, this work further extends the results of
Quillen [7] by evaluating many modeling alternatives. It was
shown that the five state segmentation of a phoneme gives

Table 2. Cepstral distances and PESQ scores for each of
LDM training methods, represented by modelsM7, . . . ,M12.
n is the state space dimension. The best measures are high-
lighted in boldface. Cepstral distances are in dB.

Model M7 M8 M9 M10 M11 M12

states 3 5 5 5 5 5
n 40 40 40 80 40 40
Algorithm 1 1 1 1 2 2
µs 6= 0 X X X
diagQ X
diagR
Cep. dist. 5.64 5.65 5.65 5.68 5.69 5.72
PESQ 2.67 2.73 2.72 2.68 2.71 2.62
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Fig. 2. Trajectories of the 2-th mel-cepstral coefficient.

better synthesized speech than the three state segmentation as
it was expected. On the other hand, it was unexpected that
Algorithm 1 performs better than Algorithm 2.

6. CONCLUSION AND FUTURE STEPS

The LDMs are promising acoustic models in the effort to pro-
duce natural speech with parametric statistical models. The
preliminary results of this study suggest that LDM produced
spectral parameters that are closer to their natural versions.
According to informal listening, speech synthesized with
LDM-generated cepstra, HSMM-aligned durations and nat-
ural F0 sounds less muffled than speech synthesized from
HSMM-generated cepstrum. In the future we plan to ap-
ply LDM to model F0, duration and band-aperiodicity, and
perform a formal evaluation of the synthesized speech.
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