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ABSTRACT
An important problem in sensor array processing is the estimation
of the number of transmitted signals. Most of the proposed solutions
rely on the assumption of uniform additive white noise on the mea-
sured signals. In this paper, an approach for estimating the number
of sources in the presence of nonuniform white noise is proposed.
The method is based on the computation of the maximal corank of
the covariance matrix of the noisy data in the Frisch scheme context.
The effectiveness of the method is tested by means of Monte Carlo
simulations.

Index Terms— Source number estimation, sensor array pro-
cessing, nonuniform additive noise, Frisch scheme.

1. INTRODUCTION

A problem of great relevance in radar, sonar, navigation, geophysics
and acoustics applications is the estimation of the Direction–of–
Arrival (DOA) of multiple signals on the basis of the measures
performed by means of arrays of narrow–band sensors. Several
solutions of this problem have been proposed and compared during
the last decades, among them MUSIC and the maximum likelihood
(ML) method [1–3].

An important issue in applying these methods concerns the es-
timation of the number of signals, because the covariance matrix of
the observations is partitioned into two parts associated with the sig-
nal and noise spaces. A common approach, based on information
theoretic criteria (ITC), has been described in [4] and, as many other
solutions [5–8], relies on the assumption of uniform white noise, i.e.
the sensor errors are modeled as spatially uncorrelated white Gaus-
sian noises with equal and unknown variance.

In many applications this assumption can be unrealistic and the
sensor noise should be considered as a colored process, as discussed
in [9, 10]. Nevertheless, in some important real applications, for ex-
ample when reverberating or seismic problems are modeled on the
basis of measures obtained from sparse arrays, the general colored
noise assumption can be relaxed by assuming the sensor noises as
spatially white with unequal noise variances [9–13]. Very few pa-
pers deal with the problem of source detection in the presence of
nonuniform noise [14, 15].

In this paper, the problem of estimating the number of signals
in the presence of spatially nonuniform independent sensor noise is
solved by applying an approach based on the Frisch scheme [16].
In particular, the problem of estimating the number of sources is
mapped into the problem of evaluating the maximal corank of the
covariance matrix of the noisy data in the Frisch scheme context.

The organization of the paper is the following. Section 2 de-
scribes the DOA framework and defines the considered problem.
Section 3 recalls the properties of the Frisch scheme. Section 4 first

recalls some important results concerning the evaluation, on the ba-
sis of a geometric approach, of the maximal corank of a covariance
matrix in the context of the Frisch scheme and then, shows how these
results can be used for solving the problem of estimating the number
of signals in the DOA environment. In Section 5 the performance of
the proposed estimation method is tested and compared with that of
the procedures introduced in [4, 14] by means of some Monte Carlo
simulations. Some concluding remarks are finally reported in Sec-
tion 6.

2. PROBLEM STATEMENT

Consider an array of n sensors receiving p narrow–band signals from
sources with directions of arrival θi (i = 1, . . . , p). The sensor array
outputs are collected in a n–dimensional vector y(t) and modeled by
the following equation

y(t) = A(θ) x(t) + e(t), t = 1, . . . , N (1)

where
θ = [ θ1, θ2, . . . , θp ]

T , (2)
N is the number of observations, A(θ) is the (n× p) array transfer
matrix, x(t) is the p–dimensional vector of source signals and e(t) is
the n–dimensional vector of the noises affecting the measures. The
additive noise e(t) is assumed as a zero–mean ergodic spatially and
temporally white complex process with unknown diagonal covari-
ance matrix

Σ̃ = E[ e(t)eH(t) ] = diag [ σ̃2
1 , σ̃

2
2 , . . . , σ̃

2
n ] , (3)

where (·)H denotes Hermitian transpose and E[ · ] is the expectation
operator. The source signal x(t) is a zero–mean, second–order er-
godic complex random vector with non–singular (p× p) covariance
matrix

Σx = E[x(t)xH(t) ] . (4)
The signal x(t) is also assumed to be uncorrelated with the noise
e(t), so that the (n× n) array covariance matrix is given by

Σ = E[ y(t) yH(t) ] = Σ0 + Σ̃, (5)

where
Σ0 = A(θ)ΣxA(θ)H . (6)

The matrix A(θ) is assumed with full column rank so that the rank
of Σ0 is p, i.e. Σ0 has its n− p smallest eigenvalues equal to zero.

The problem under investigation consists in estimating the
number of signal sources p starting from a set of N observations
y(1), y(2), . . . , y(N).

In the next sections, it will be shown that this problem can be
mapped into the problem of determining the maximal corank of the
covariance matrix Σ in the Frisch scheme context.
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3. FRISCH SCHEME PROPERTIES

In the following, the (n×n) symmetric, positive definite covariance
matrix of the noisy data Σ will be denoted as Σn for notation conve-
nience. Given the matrix Σn, consider now the problem of finding
all diagonal matrices Σ̃(P ) = diag [σ2

1 ,σ
2
2 , . . . ,σ

2
n] with nonnega-

tive elements σ2
i (i = 1, . . . , n) such that the matrix Σn − Σ̃(P ) is

singular and nonnegative definite, i.e.

Σ0(P ) = Σn − Σ̃(P ) ≥ 0 and detΣ0(P ) = 0 , (7)

where P = (σ2
1 ,σ

2
2 , . . . ,σ

2
n) is a point belonging to the positive

orthant of Rn [16, 17]. Every positive definite or semidefinite diag-
onal matrix Σ̃ satisfying (7) is a solution of the Frisch Scheme. The
corresponding point P can be considered as an admissible solution
in the noise space. The locus of all admissible solutions is described
by the following theorem [17].

Theorem 1. All admissible solutions in the noise space lie on
a convex (hyper)surface S(Σ) whose concavity faces the origin
and whose intersections with the coordinate axes are the points
(0, . . . ,σ2

i , . . . , 0) corresponding to the n least squares solutions.
Definition 1. [18] The (hyper)surface S(Σn) will be called sin-

gularity (hyper)surface of Σn because every point P of S(Σn) de-
fines a noise covariance matrix Σ̃(P ) that leads to a singular matrix
Σ0(P ).

As an example, Fig. 1 shows the singularity surface S(Σ3) for a
(3× 3) noisy covariance matrix.

The corank of the singular matrix Σ0(P ) = Σn − Σ̃(P ) is de-
fined as the dimension m of the null space of Σ0(P ) so that it co-
incides with the number of null eigenvalues of Σ0(P ). It is worth
to highlight that the corank of Σ0(P ) can change by moving P on
S(Σn) i.e., by varying Σ̃(P ) according to condition (7) [19]. The
maximum value that m can assume for P ∈ S(Σn) is defined as the
maximal corank of Σn in the Frisch scheme context

MaxcorF (Σn) = maxΣ̃(P ) [n− rank(Σn − Σ̃(P )) ]. (8)

Note that relations (5), (6) and the assumption on A(θ) lead eas-
ily to the following result.

Corollary 1. The point P̃ = (σ̃2
1 , . . . , σ̃

2
n) corresponding to

the actual array noise variances belongs to S(Σn) and is associated
with a singular matrix Σ0(P ) = Σn − Σ̃(P̃ ) whose null space has
dimension n− p, i.e. corank (Σ0(P )) = n− p.

We will assume that P̃ is the only point of S(Σn) leading to a
singular matrix with corank n− p, that is

corank (Σ0(P )) < n− p ∀P &= P̃ , (9)

that leads immediately to

MaxcorF (Σn) = n− p. (10)

For a discussion concerning the above assumption see [20]. Because
of (10), the problem of estimating the number of signal sources p can
thus be seen as the problem of determining the maximal corank of
the covariance matrix Σn in the Frisch scheme context. The solution
of this problem is recalled in the next Section.

4. COMPUTATION OF THEMAXIMAL CORANK OF A
COVARIANCEMATRIX IN THE FRISCH SCHEME

CONTEXT

Some important results concerning the evaluation of the maximal
corank of Σn in the Frisch scheme context are the following.

σ2
1 σ2

2

σ2
3

Fig. 1. Typical shape of S(Σ3).

Theorem 2. MaxcorF (Σn) = 1 if and only if all entries of Σ−1
n

are positive or can be made positive (Frobenius–like according to the
definition of Kalman [21]) by changing the sign of some variables.

Theorem 3. [22] When MaxcorF (Σn) > 1, S(Σn) is nonuni-
formly convex.

Theorem 4. [19] All points of S(Σn) where corank (Σn) =
k (k > 1) are accumulation points for those where corank (Σn)
= k − 1.

Despite its simple formulation, the problem of determining
MaxcorF (Σn) remained unsolved for many years. One of the rea-
sons is probably due to the focus of many researches on the locus
of the solutions in the parameter space and to the practical impos-
sibility of describing this locus, when MaxcorF (Σn) > 1, except
than in elementary cases. An upper bound to MaxcorF (Σn) has
been given in [23]; geometric conditions to evaluate MaxcorF (Σn)
have, instead, been given in [19] on the basis of the analysis of the
properties of the locus of noise space solutions.

Define, to this purpose, the singularity (hyper)surface S(Σn/r)
as the locus of the points (σ̃2

1 , . . . , σ̃
2
r) ∈ Rr such that

Σn − diag
[

σ2
1 , . . . ,σ

2
r , 0, . . . , 0

]

(11)

is singular and nonnegative definite. Define also Σr as the (r ×
r) upper left corner of Σn and S(Σr) as the locus of the points
(σ̃2

1 , . . . , σ̃
2
r ) ∈ Rr such that

Σr − diag
[

σ2
1 , . . . ,σ

2
r

]

(12)

is singular and nonnegative definite. As an example, Fig. 2 shows
the locus S(Σ3/2) and S(Σ2) related to the covariance matrix Σ3

already considered in Fig. 1. The following geometric relations hold.
Theorem 5. [24] S(Σn/r) lies always under or on S(Σr).
Theorem 6. [19] MaxcorF (Σn) ≥ q if and only if S(Σn−q+1)∩

S(Σn/n−q+1) &= {0} for every subset of n − q + 1 variables, i.e.
for every permutation of the data leading to different subgroups in
the first n− q + 1 positions.

Theorem 6 allows the straightforward formulation of an algo-
rithm for computing whether MaxcorF (Σn) ≥ 2, 3, . . . until the
required conditions are no longer satisfied.

The existence of common points between different singularity
hypersurfaces can be easily and efficiently verified by relying on the
radial parameterization of these surfaces introduced in [25], based
on the following theorem.
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Fig. 2. Common points between S(Σ2) and S(Σ3/2) in a (3 × 3)
covariance matrix with MaxcorF (Σ3) = 2.

Theorem 7. Let ξ = (ξ1, . . . , ξn) be a generic point in the posi-
tive orthant of Rn and ρ the straight line from the origin through ξ.
The intersection P = (σ2

1 , . . . ,σ
2
n) between ρ and S(Σn) is given

by
P =

ξ
λM

, (13)
where

λM = max eig
(

Σ−1
n Σ̃ξ ) (14)

and
Σ̃ξ = diag

[

ξ1, . . . , ξn
]

. (15)
This result introduces a parameterization of the singularity (hy-

per)surface of a covariance matrix, characterized by its intersec-
tions with a sheaf of straight lines through the origin, and has be-
come a standard tool for the efficient solution of Frisch identifica-
tion problems [16, 26]. In particular, note that the intersections P ′

and P ′′ of the same line ρ with two singularity hypersurfaces S(Σ′

n)
and S(Σ′′

n), can be easily computed by means of Theorem 7 and
‖P ′ − P ′′‖ gives the distance between S(Σ′

n) and S(Σ′′

n). A sim-
ple search procedure allows then to compute the minimal distance
between S(Σ′

n) and S(Σ′′

n) and, consequently, to evaluate the pres-
ence of common points.

Of course the same procedure can be used to operate on sin-
gularity surfaces belonging to the same vector space but associated
with matrices with different dimensions like, for instance, S(Σr)
and S(Σn/r). This allows the solution of the problem of evaluat-
ing MaxcorF (Σn) and, as a consequence, the determination of the
number of signal sources p. In practice, the covariance matrix Σn is
replaced by the sample estimate

Σ̂n =
1
N

N
∑

t=1

y(t)yH(t). (16)

In this case, it is still possible to define singularity hypersurfaces like
S(Σ̂n) and S(Σ̂n/r) so that the above mentioned search procedure
can still be employed to evaluate the maximal corank of Σ̂n.

5. SIMULATION RESULTS

The proposed approach has been tested by considering a uniform lin-
ear array with omnidirectional sensors and half-wavelength interele-
ment spacing. We assume that there are p = 2 sources and n = 5

−10 −5 0 5 10 15 20 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

Fr
eq

ue
nc

y 
of

 c
or

re
ct

 d
et

ec
tio

n

 

 

MC
NU−MDL

Fig. 3. Frequency of correct detection versus SNR, N = 100.

sensors. The two sources are mutually uncorrelated complex white
gaussian processes with unit variance. The directions of arrival are

θ1 = 7◦ θ2 = 13◦,

so that the array transfer matrix is given by [27]

A =









1 1
eiπ sin 7 eiπ sin 13

...
...

ei4π sin 7 ei4π sin 13









.

In the first example, the sensor noise e(t) has the covariance
matrix

Σ̃ = µdiag [ 1, 3, 4, 2, 5 ] , (17)
where the scalar µ > 0 is adjusted in order to set the desired array
signal to noise ratios defined as [10]

SNRi =
E[xi(t)2]

5

5
∑

j=1

1
σ2
j

, i = 1, 2.

Since the signal sources have equal variances we have SNR1 =
SNR2 = SNR. Note that the worst noise power ratio WNPR =
σ2
max/σ

2
min is 5 [10]. The proposed algorithm, based on the com-

putation of the maximal corank (MC), has been tested by consider-
ing N = 100 data samples and a SNR ranging from −10 dB to
25 dB. For each value of the array SNR a Monte Carlo simulation
of 1000 independent runs has been performed. The performance of
the MC method is compared to that of the averaged version of the
Non-Uniform MDL (NU-MDL) criterion proposed in [14].

Fig. 3 reports the frequency of correct estimation of p versus the
SNR. The MC criterion exhibits a better performance for low signal
to noise ratios.

Figs. 4 and 5 compare the performances of MC and NU-MDL
with respect to the number of samples for SNR = 5 dB and SNR =
10 dB respectively. It can be observed that MC outperforms NU-
MDL when the number of samples in not too small.

In the second example, in order to compare the considered es-
timation algorithms with respect to the non uniformity of the noise,
we introduce the following noise covariance matrix

Σ̃k = µdiag [ 1, 1 + 2k, 1 + 3k, 1 + k, 1 + 4k ],
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Fig. 4. Frequency of correct detection versus the number of samples
N , SNR = 5 dB.
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Fig. 5. Frequency of correct detection versus the number of samples
N , SNR = 10 dB.

where 0 ≤ k ≤ 4 and µ is selected in order to obtain a SNR of 5 dB.
By varying k from k = 0 to k = 4, the WNPR ranges from 1 to 17.
Note that k = 0 corresponds to the uniform noise case (all variances
are equal) whereas k = 1 leads to the noise covariance matrix (17) of
the previous example. In practice, the index k can be considered as a
measure of the noise nonuniformity. For each value of k (of WNPR)
a Monte Carlo simulation of 1000 independent runs has been car-
ried out. The MC and NU-MDL criteria have been compared with
the frequently adopted Akaike Information Criterion (AIC) and Min-
imum Description Length (MDL) criterion described in [4].

Figs. 6 and 7 report the frequency of correct estimation of p ver-
sus WNPR for N = 100 and N = 300 respectively. The obtained
results show that the proposed algorithm is less sensitive to the noise
unbalance compared to the NU-MDL criterion. The performance
of AIC and MDL are very good for small values of WNPR but de-
creases fastly with WNPR. This is not surprising since both AIC and
MDL are based on the assumption of uniform noise.
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Fig. 6. Frequency of correct detection versus WNPR, SNR = 5 dB,
N = 100.
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Fig. 7. Frequency of correct detection versus WNPR, SNR = 5 dB,
N = 300.

6. CONCLUSIONS

An approach for estimating the number of source signals in the pres-
ence of nonuniform additive white noise has been proposed. In par-
ticular, the problem of estimating the number of sources has been
mapped into the problem of evaluating the maximal corank of the
covariance matrix of the noisy data in the Frisch scheme context. It
is worth stressing that, unlike the criteria described in [4, 14], the
assumption of gaussianity of the source signals and of the sensor
noises is not required by the proposed method.
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