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ABSTRACT

In this paper, we derive a Bayesian Cramér-Rao type bound in
the presence of unknown nuisance deterministic parameters.
The most popular bound for parameter estimation problems
which involves both deterministic and random parameters is
the hybrid Cramér-Rao bound (HCRB). This bound is very
useful especially, when one is interested in both the determin-
istic and random parameters and in the coupling between their
estimation errors. The HCRB imposes locally unbiasedness
for the deterministic parameters. However, in many signal
processing applications, the unknown deterministic parame-
ters are treated as nuisance, and it is unnecessary to impose
unbiasedness on these parameters. In this work, we estab-
lish a new Cramér-Rao type bound on the mean square error
(MSE) of Bayesian estimators with no unbiasedness condi-
tion on the nuisance parameters. Alternatively, we impose
unbiasedness in the Lehmann sense for a risk that measures
the distance between the estimator and the minimum MSE
estimator which assumes perfect knowledge of the nuisance
parameters. The proposed bound is compared to the HCRB
and MSE of Bayesian estimators with maximum likelihood
estimates for the nuisance parameters. Simulations show that
the proposed bound provides tighter lower bound for these
estimators.

Index Terms— Bayesian Cramér-Rao bound, hybrid
Cramér-Rao bound, Lehmann unbiasedness, Risk unbiased-
ness, nuisance parameters, MSE

1. INTRODUCTION
The Cramér-Rao bound (CRB), introduced in [1, 2], is a
milestone for lower bounds on the MSE in non-Bayesian
parameter estimation. It is commonly used as a benchmark
for asymptotic performance, i.e. for a large number of ob-
servations and/or a large signal-to-noise ratio (SNR), where
the estimation errors tend to fade. In [3] a Cramér-Rao type
bound was established for the Bayesian framework, known
as the Bayesian CRB (BCRB). The combination of both
scenarios, where the parameter vector is composed of both
random and deterministic parameters was first introduced in
the context of array processing [4], and then reexamined in

a general framework in [5]. The attractivity of this bound,
which was named hybrid Cramér-Rao bound (HCRB), comes
from its computational efficiency, since it does not involve
marginalization of the random parameters.

The problem of non-Bayesian parameter estimation in
the presence of random nuisance parameters was investigated
in [6–10]. On the other hand, Bayesian estimation based on
a family of prior distributions indexed by a set of parameters
known as hyperparameters, was thoroughly investigated. This
concept is based on three methodologies, which are described
in [11, 12]: (1) The approach of hierarchical Bayes assigns a
prior distribution to the hyperparameters; (2) The technique
of robust Bayes is based on evaluating the performance of
an estimator for each member of the prior class, in order to
extract an estimator which performs well for the entire class;
(3) The approach of empirical Bayes turns to estimation of
the hyperparameters from the data.

Only few works in the literature have been focused on the
wide context of Bayesian parameter estimation in the pres-
ence of deterministic nuisance parameters. This scenario was
lately investigated by Yatracos [13], who derived a Cramér-
Rao type bound for locally weak-sense unbiased estimators.
In [14] the bound was tightened by representing the MSE as
a sum of two components: the minimum mean square error
(MMSE) and a modified risk which was bounded by Yatracos
bound.

Forming a estimator is possible by substituting an esti-
mate of the deterministic nuisance parameters into a Bayesian
estimator. This approach is inspired by parametric empirical
Bayes [15, 16]. A natural choice would be to substitute the
maximum likelihood estimate (MLE) of the nuisance param-
eter into the MMSE estimator of the Bayesian parameter in
order to benefit from the asymptotical properties of the MLE
and the optimality of the MMSE estimator. This estimator
will be denoted by JMS-ML. Another option is to exploit
the joint maximum a-posteriori probability-ML (JMAP-ML)
estimator. Bar-Shalom [17] was the first to consider this ap-
proach in the context of joint state estimation and parameter
identification on a discrete-time linear system. This estimator
was also considered in [18, 19]. In [20], the relation between
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the JMAP-ML estimator and the MLE was analyzed for esti-
mation of deterministic vector parameter in additive Gaussian
noise.

In order to form the concept of risk-unbiasedness in the
context of Bayesian parameter estimation in the presence
of deterministic nuisance parameters, two approaches were
combined in [21]. The first is Lehmann-unbiasedness crite-
rion [22], which generalizes the conventional mean unbiased-
ness to arbitrary cost functions, e.g. [23, 24]. The second is
the concept of risk-unbiasedness prediction [25], which ana-
lyzes a new criterion for unbiasedness of Bayesian estimators
when a deterministic nuisance parameter is involved.

In this paper, the problem of Bayesian parameter esti-
mation in the presence of deterministic nuisance parame-
ters is addressed and a new Bayesian lower bound on the
MSE is derived using the covariance inequality [26, p. 113]
and the concept of risk-unbiasedness. The HCRB imposes
mean-unbiasedness of both random and deterministic param-
eters [27]. The question which arises is: why is it necessary to
impose unbiasedness condition on the nuisance parameters.
On the contrast, risk-unbiasedness imposes an unbiasedness
condition in the Lehmann sense w.r.t. the MSE rather than
unbiasedness on the nuisance parameters.

2. RISK-UNBIASEDNESS
Let (Ωx × Ωϕ,F , Pθ) denote a probability space where
Ωx ⊆ RN is the observation space, Ωϕ ⊆ R is the parameter
space, F is the σ-algebra on Ωx × Ωϕ, and {Pθ}θ∈Θ is a
family of parameterized probability measures, such that the
probability space has a finite second statistical moment w.r.t.
Pθ. Let ψ = [ϕ,θT ]T be an unknown vector parameter,
where the parameter of interest, ϕ ∈ Ωϕ, is a random vari-
able and the vector of nuisance parameters, θ ∈ Θ ⊆ RM
is considered as deterministic. We are interested to estimate
the parameter of interest ϕ based on the random observa-
tion vector x ∈ Ωx. Let f(x, ϕ;θ), f(ϕ|x;θ), f(x;θ), and
fϕ(ϕ;θ) denote the joint, the posterior, the observation, and
the prior probability density functions (pdf’s), respectively.
The function ϕ̂(x) is an estimator of ϕ with estimation error
ε = ϕ̂(x)−ϕ. Eθ[·] and Eθ[·|x] stand for the expectation
operator w.r.t. f(x, ϕ;θ) and f(ϕ|x;θ), respectively. The
column vector of the gradient operator w.r.t. θ is denoted by
∂
∂T θ

, and the Hessian matrix operator w.r.t. θ is denoted by
∂2

∂θ∂T θ
.

Under the MSE criterion, the risk is defined asL(ϕ̂,θt) =
Eθt [ε

2], where θt denotes the true value of θ. When θt is
known, the MMSE estimator is given by the conditional
mean, ϕ̂MS(x,θt) = Eθt

[ϕ|x]. The estimation error of the
MMSE estimator is εMS(x,θt) = ϕ̂MS(x,θt) − ϕ. If θt is
unknown, then ϕ̂MS(x,θt) is not a valid estimator of ϕ and
the conventional Bayesian MSE bounds are not tight.

The JMS-ML estimator is given by ϕ̂JMS−ML(x) =

ϕ̂MS(x, θ̂ML), where θ̂ML is the MLE of θ, given by
θ̂ML = arg max

θ
f(x;θ).

The JMAP-ML estimator [20] is given by ϕ̂JMAP−ML(x) =

arg max
ϕ

[
max
θ

log f(x, ϕ;θ)

]
.

By utilizing the orthogonality principle of the MMSE
estimator, the MSE risk can be expressed as:

L(ϕ̂,θ) = Eθ[(ϕ̂(x)−ϕ̂MS(x,θ))2] + Eθ[ε2MS(x,θ)]. (1)

The term Eθ[ε2MS(x,θ)] in the right hand side (r.h.s.) of (1)
is independent of ϕ̂(x). Accordingly, as in [21], we focus on
a modified risk, defined by the first term in the r.h.s. of (1),
which measures the “closeness” between the estimator ϕ̂(x)
to the optimal estimation procedure when θ is known:

R(ϕ̂,θ) = Eθ[(ϕ̂(x)−ϕ̂MS(x,θ))2]. (2)

The modified estimation error is now defined as zϕ̂(x,θ) ,
ϕ̂(x)−ϕ̂MS(x,θ) and accordingly, the modified cost func-
tion is rϕ̂(x,θ) = z2

ϕ̂(x,θ).
In order to provide an appropriate unbiasedness criterion

for the modified cost function, we utilize Lehmann’s concept
of unbiasedness, which was first introduced in the context of
arbitrary cost functions in the non-Bayesian framework [22].

Consider the following criterion for optimal parameter es-
timation θ̂opt = arg min

θ̂∈S
Eθ[C(θ̂(x),θ)] where S denotes a

given subspace of estimators.

Definition 1. The estimator θ̂(x) is said to be point-wise
unbiased at θ in the Lehmann sense w.r.t. the cost function
C(θ̂(x),θ) if

Eθ[C(θ̂(x),θ)] ≤ Eθ[C(θ̂(x),η)] , ∀η ∈ Θ. (3)

If (3) is valid for all values of θ ∈ Θ, then θ̂ is said to be
uniformly unbiased.

The Lehmann-unbiasedness definition implies that an es-
timator is unbiased if on the average it is “closest” to the true
parameter, θ, rather than to any other value in the parame-
ter space, η ∈ Θ. The measure of “closeness” between the
estimator and the parameter is the cost function C(θ̂(x),θ).
It is shown in [22] that under the quadratic cost function,
C(θ̂(x),θ) = ‖θ̂(x)−θ‖2, the Lehmann-unbiasedness in (3)
is reduced to the conventional mean-unbiasedness, Eθ[θ̂(x)−
θ] = 0M , where 0M is a column vector of length M , whose
entries are equal to 0. Applying Lehmann-unbiasedness con-
dition to the risk in (2), leads to the following definition.

Definition 2. The estimator ϕ̂(x) is said to be point-wise risk-
unbiased at θ if

Eθ[rϕ̂(x,θ)] ≤ Eθ[rϕ̂(x,η)] , ∀η ∈ Θ. (4)

If (4) is valid for all values of θ ∈ Θ, then ϕ̂(x) is said to be
uniformly risk-unbiased.
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The next theorem states that under some mild regularity
conditions, the above definition can be expressed in a simpler
manner.

Theorem 1. If ϕ̂MS(x,η) is once differentiable w.r.t. η for
a.e. x ∈ Ωx, a necessary condition for the estimator ϕ̂(x) to
be point-wise risk-unbiased at θt, is given by:

Eθt
[zϕ̂(x,θt)d(x,θt)] = 0M (5)

where d(x,θt) ,
∂ϕ̂MS(x,θ)

∂T θ

∣∣∣
θt

. If, in addition, ϕ̂MS(x,η)

is twice differentiable w.r.t. η and r(ϕ̂,η) is convex in η for
a.e. x ∈ Ωx, then the condition in (5) is also sufficient.

Proof 1. Let ϕ̂(x) be point-wise risk-unbiased at θt. Then
(4) implies that θt = arg min

η
Eθt [r(ϕ̂,η)]. Since ϕ̂MS(x,η)

is once differentiable w.r.t. η and Eθt
[r(ϕ̂,η)] depends on η

only through ϕ̂MS(x,η), then Eθt
[r(ϕ̂,η)] is also once dif-

ferentiable. Taking its derivative w.r.t. η yields the neces-
sary condition for the estimator ϕ̂(x) to be point-wise risk-
unbiased at θt:

∂Eθt
[r(ϕ̂,η)]

∂Tη

∣∣∣∣
θt

=
∂Eθt

[
(ϕ̂(x)−ϕ̂MS(x,η))2

]
∂Tη

∣∣∣∣
θt

= Eθt [z(ϕ̂,x,θt)d(x,θt)] = 0M .

(6)

Suppose that (5) holds and that r(ϕ̂,η) is convex on Θ for
a.e. x ∈ Ωx. Then, using Taylor’s theorem:

∀η ∈ Θ,∃c(η) ∈ [0, 1] : Eθt [r(ϕ̂,η)]−Eθt [r(ϕ̂,θt)] =

= (η − θt)TEθt

[
∂2r(ϕ̂, ζ)

∂ζ∂T ζ

] ∣∣∣∣
ζ=cθt+(1−c)η

(η − θt) ≥ 0

(7)

where the last inequality stems from the property of convexity.

�

Thus, equation (5) can be utilized as an alternative defini-
tion for point-wise risk-unbiasedness.

If ϕ̂MS(x,θ) is twice differentiable w.r.t. θ, then the left
hand side (l.h.s.) of (5) is once differentiable. Taking the
derivative of both sides of (5) in θt yields the following defi-
nition.

Definition 3. The estimator ϕ̂(x) is said to be locally risk-
unbiased around θt if (5) holds and

Eθt
[z(ϕ̂,x,θt)H(x,θt)] = A(θt) (8)

where A(θt) , Eθ[d(x,θt)d
T (x,θt)] and

H(x,θt) ,
∂2ϕ̂MS(x,θ)
∂θ∂T θ

∣∣∣∣
θt

+ d(x,θt)
∂ log f(x;θ)

∂θ

∣∣∣∣
θt

.

3. MSE LOWER BOUND FOR RISK-UNBIASED
ESTIMATORS

In this section, we derive a Bayesian lower bound on the MSE
of risk-unbiased estimators in the presence of deterministic
nuisance parameters. For the simplicity of notations, in the
sequel we will use the symbol θ instead of the true parameter
θt.

3.1. The Proposed Bound
Given u : Ωx ×Θ → R and v : Ωx ×Θ → RK for some
K ∈ N, The covariance inequality [26, p. 113] is given by:

Eθ[u2] ≥ Eθ[uvT ]E−1
θ [vvT ]Eθ[vu]. (9)

By setting u(x,θ) = zϕ̂(x,θ), the l.h.s. of (9) turns into
the modified risk in (2) while the r.h.s. constitutes a lower
bound. Denote h(x,θ) = vec(H(x,θ)) where vec(·)
stands for the vectorization operation. Letting v(x,θ) =[
dT (x,θ),hT (x,θ)

]T
, where and then applying the con-

straints in (5) and (8) yields the following terms for locally
risk-unbiased estimators:

Eθ[u(x,θ)vT (x,θ)] = Eθ

[
zϕ̂(x,θ)

[
dT (x,θ),hT (x,θ)

]]
=
[
0TM , vecT (A(θ))

]
(10)

Eθ[v(x,θ)vT (x,θ)] =

[
A(θ) BT (θ)
B(θ) C(θ)

]
(11)

where B(θ) , Eθ[h(x,θ)dT (x,θ)] and
C(θ) , Eθ[h(x,θ)hT (x,θ)]. Substituting (10) and (11) into
(9) forms a lower bound on the modified risk for locally risk-
unbiased estimators:

Eθ[z2
ϕ̂(x,θ)] ≥ vecT (A)(C−BA−1BT )−1vec(A) (12)

where for the simplicity of notations we omitted the depen-
dency of A, B, and C on θ. Substituting (12) into (1) results
in a lower bound on the MSE of ϕ̂(x):

L(ϕ̂,θ) ≥ Eθ[ε2MS(x,θ)]

+ vecT (A)(C−BA−1BT )−1vec(A).
(13)

3.2. The Proposed Bound for Scalar Nuisance Parameter
For the case of a scalar nuisance parameter, θ, the bound in
(13) can be simplified to

L(ϕ̂, θ) ≥ Eθ
[
ε2MS(x, θ)

]
+

a3(θ)

a(θ)c(θ)−b2(θ)
(14)

where a(θ) , Eθ

[(
∂ϕ̂MS(x,θ)

∂θ

)2
]

,

b(θ) , Eθ
[
∂ϕ̂MS(x,θ)

∂θ

(
∂2ϕ̂MS(x,θ)

∂θ2 + ∂ϕ̂MS(x,θ)
∂θ

∂ log f(x;θ)
∂θ

)]
and c(θ) , Eθ

[(
∂2ϕ̂MS(x,θ)

∂θ2 + ∂ϕ̂MS(x,θ)
∂θ

∂ log f(x;θ)
∂θ

)2
]

.
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The form of the bound for scalar nuisance parameter in
(14) sheds light over the full form of the bound in (13) and the
concept of risk-unbiasedness. The proposed bound is based
on the sensitivity of the MMSE estimator to perturbations
around θ. Incorporation of the first and second order deriva-
tives with the derivative of the marginal likelihood function,
provides a small error bound for estimators which exploit the
form of dependency of the MMSE estimator on the determin-
istic nuisance parameters, as the next section states.

4. EXAMPLE - SIGNAL ESTIMATION
In this example, we examine the problem of random source
signal estimation using an array of sensors. Consider the fol-
lowing observation model:

xn = ca(φ)sn + wn, n = 1, . . . , N (15)

where s = [s1, . . . , sN ] ∈ CN is a sequence of zero-mean
complex proper jointly Gaussian random variables with a
known covariance σ2

s IN , c > 0 is an unknown amplitude,
a(φ) ∈ CK is a normalized steering vector of a uniform
linear array of half wavelength inter element spacing with K
elements, and {wn}Nn=1 is a white zero-mean complex proper
Gaussian random noise vector sequence with a known covari-
ance matrix σ2

wIK . The MMSE estimator of ϕn = sn from
x =

[
xT1 , . . . ,x

T
N

]T
for an unknown value of θ = [φ, c]

T is
given by:

ŝnMS
(x,θ) =

cσ2
s

σ2
w + c2σ2

s
aH(φ)xn. (16)

By applying the Bayes law, the logarithm of the joint pdf of x
and s is obtained:

log f (x, s;θ) = log f (x|s;θ) + log f (s;θ)

=−NM log(πσ2
w)−N log(πσ2

s )

−
N∑
n=1

‖xn − ca(φ)sn‖2

σ2
w

− |sn|
2

σ2
s
.

(17)

Since the measurements and the parameter of interest are
jointly Gaussian, the BCRB equals the MMSE [3]. In ad-
dition, the hybrid Fisher information matrix [27] is block
diagonal, such that the estimation errors of the elements of
s are uncoupled to each other, and to those of the nuisance
parameters. Thus, the BCRB and the HCRB for estimation of
the elements of s are also equal:

BCRB(sn) = HCRB(sn) =
σ2

s σ
2
w

σ2
w + c2σ2

s
, n = 1, . . . , N.

(18)
Using (17), the logarithm of the marginal pdf of the observa-
tions can be verified to take the form:

log f(x;θ) =−NM log(πσ2
w)−N log

(
1 +

σ2
s

σ2
w

)
−

N∑
n=1

1

σ2
w

xHn

(
IN −

c2σ2
s a(φ)aH(φ)

σ2
w + c2σ2

s

)
xn.

(19)

The proposed bound can be computed by using (14), (16),
(18), and (19).

For each experiment, the MLE of θ is obtained by maxi-
mizing log f(x;θ) w.r.t. θ, such that:

φ̂ML = arg max
φ

N∑
n=1

|aH(φ)xn|2

ĉ2ML = max

(
1
N

∑N
n=1 |aH(φ̂ML)xn|2 − σ2

w

σ2
s

, 0

)
.

(20)

The JMAP-ML estimator can be verified to be identical to the
JMS-ML estimator.

The MSE of the JMS-ML, the HCRB, and the proposed
bound versus SNR are presented in Fig. 1, where SNR ,
c2σ2

s
σ2
w

. The MSE was evaluated using 10,000 Monte-Carlo
simulations with σ2

s = 1, N = 20, M = 2, c = 1 and
φ = π

3 . φ̂ML was evaluated using a grid search with a reso-
lution of 10−3. The proposed bound provides a tighter lower
bound for the JMS-ML estimator, for all SNR values.

5 10 15 20 25 30
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Fig. 1. The HCRB, proposed bound, and MSE of JMS-ML.

5. CONCLUSION
In this paper, the concept of Bayesian parameter estimation
in the presence of deterministic nuisance parameters is intro-
duced and a Cramér-Rao type bound for the MSE was devel-
oped. Unlike the HCRB, the proposed bound does not as-
sume unbiasedness for the nuisance parameter. The proposed
bound assumes risk-unbiasedness which is more appropriate
for the case of nuisance parameters. The asymptotic proper-
ties of the proposed bound are investigated and its relation to
conventional estimators was explored. It was shown that for
the problem of Gaussian source signals estimation using an
array of sensors, the proposed bound provides a tighter bound
than the HCRB on the performance of the JMS-ML estimator.
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