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ABSTRACT

We present a novel classification algorithm for learning with
test time budgets. In this setting, the goal is to reduce fea-
ture acquisition cost while maintaining classification accu-
racy. For every decision, our approach dynamically selects
features based on previously observed information. Once a
desired confidence of a decision is achieved, the acquisition
stops and the test instance is classified. Our approach can be
used in conjunction with many popular margin based classifi-
cation algorithms. We use margin information from training
data in the partial feature neighborhood of a test point to com-
pute a probability of correct classification. This estimate is
used to either select the next feature or to stop. We compare
our algorithm to other cost-sensitive methods on real world
datasets. The experiments demonstrate that our algorithm
provides an accurate estimate of classification confidence and
outperforms other approaches while being significantly more
efficient in computation.

Index Terms— cost-sensitive, learning with test time
budget, dynamic feature selection

1. INTRODUCTION

Most of traditional machine learning has focused on improv-
ing accuracy of classification algorithms. However, in a grow-
ing number of applications, high classification accuracy has
to be balanced with the cost of using an algorithm. This cost
arises due to the computational complexity of acquiring fea-
tures during test time. Often some decisions can be made
reliably with several cheap features while others require the
full feature set. For example, in a web search ranking appli-
cation, an algorithm has to return relevant results in millisec-
onds. It is impossible to compute complex features of each
document in order to rank them within such a short time. In
fact, many documents can be quickly eliminated using cheap
pre-computed features such as PageRank, and the remaining
documents need to be scored with more expensive features
([1]). In an object recognition application, many features are
costly to compute and detection cascades ([2, 3, 4]) use a se-
quence of stages that are tuned to make majority decisions
using fast features and compute more expensive features only
when necessary.

This work is partially supported by NSF Grants 0932114 and 1330008

We introduce a novel algorithm to dynamically select fea-
tures for every test instance until we reach a desired classi-
fication accuracy. We assume we have access to a training
set with full features and corresponding class labels. For ev-
ery test point, there is a cost associated with measuring or
computing each feature. Our system acquires one feature at
a time, adaptively deciding which feature to request next or
when to stop and classify. We learn such a policy by utiliz-
ing training examples within a neighborhood of a test point.
The key challenge in learning such a decision system is to
correctly determine the neighborhood. After acquiring a par-
tial set of features, we can not infer the true distance from a
test point to training points in the full feature space. In other
words, the nearest neighbor based on partial feature measure-
ment may not be a true neighbor in the full feature space.
We call this difficulty partial neighborhood confusion. Algo-
rithms that try to learn the label of a test point based on the
labels of training points in the partial neighborhood tend to
perform poorly due to this difficulty.

In contrast, to make our approach more robust to such
partial neighborhood confusion, we incorporate classification
margins in our system. In binary classification, a margin of an
example is typically an output of a decision functions times
the label (+1/ − 1) of an example. Margins are widely used
as a measure of classification confidence. A large positive
margin indicates high confidence, while a negative margin in-
dicates an incorrect decision. Maximizing margins has led
to many powerful tools in machine learning such as SVM,
boosting, etc ([5]). We use margins to estimate the probability
of correct classification and sequentially maximize this prob-
ability at each stage of the decision making process. Since
the label of a test point is unknown, its margin cannot be
computed directly. To overcome this problem, our algorithm
learns the unknown test margin from the training data in the
partial neighborhood of this test point. Recall that feature val-
ues and labels are known for the training data, hence margins
are also fully known. Since our algorithm learns margin infor-
mation instead of class label from nearest neighbors based on
partial feature measurement, we are more robust to the par-
tial neighborhood confusion problem. Intuitively, points far
from each other in the full feature space are unlikely to share
the same label but may produce the same sign margins on the
same feature. We will illustrate this point further through an
example in Section 3 and Experiments in Section 4.
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Related Work: Classification under budgets has become
an increasingly active research topic in recent years. One di-
rection has been in learning a fixed order in which features are
to be acquired for every test point. For instance, the greedy
miser algorithm ([6]) performs cost sensitive boosting of re-
gression trees by balancing the choice of feature with its mea-
surement cost. However, the resulting decision system is not
adaptive and requests the same order of features for every
decision. In contrast, our approach dynamically determines
which features will improve classification for every test in-
stance. In a partially adaptive setting, sequential classifiers
([7, 8]) and detection cascade ([2, 3, 4]) consist of several
stages of decisions. Early stages utilize cheap/fast features
and pass the difficult examples to later stages to acquire more
expensive features. However, each stage is limited to either
classifying or requesting the next feature in the predetermined
order while in our method, the order is adaptive to every de-
cision.

Other methods formulate this problem as a Markov De-
cision Process. However, classical MDP solutions becomes
intractable as the number of features and the state space size
grow. Authors in [9] use standard linear approximation of Q
factors for learning policies for timely image classification.
Other approaches utilize imitation learning from the robotics
community. Here, researchers assume access to an oracle pol-
icy that outputs the optimal decision given current state and
the goal is to train a policy that imitates this oracle [10]. How-
ever, this approach needs to iterate through a quickly growing
set of training instances which is computationally expensive.

Authors in [11] present a feature selection scheme related
to test time budgeted learning. The method uses Gaussian
mixture to model the likelihood of an unmeasured feature
given observed measurements. At each time, this likelihood
model is used to estimate expected value of acquiring each
feature, and the one with the highest value is chosen. In
contrast, our method does not estimate the unmeasured fea-
ture distribution but estimates the probability of correct clas-
sification directly. In fact, our method is purely data-based
and does not assume a probability model. We compare this
method in Section 4.

2. PROBLEM SETUP

Given the training set of N data points and corresponding
labels (x(l), y(l)), l = 1, . . . , N , each point has d features
φ(x(l)) ∈ <d, and we assume all features are known for train-
ing. Given an unknown test point, a feature j can be mea-
sured or acquired for a cost cj , j = 1, . . . , d. We assume we
are given a linear classifier, f(x) = wTφ(x), trained on the
entire training set. Note we omit the offset term in our discus-
sion because it can be considered as an additional (constant)
feature of the data point.

Remark: We assume a linear classifier is used for the en-
tire data set. This is not as restrictive as it may appear. In

fact, kernel SVM is linear in the transformed feature space
and Boosting([12]) is linear once we consider weak learners
as transformed features. We will show in our experiment that
our algorithm works with both SVM and Boosting.

In the rest of this section, we explain our dynamic feature
selection approach for a new test point, x. Let O be the in-
dex set of measured features and O be the index set of the
remaining features. We use wO to denote the elements of w
indexed by O. For ease of notation we use i to denote the
index of the next potential feature to be measured. Initially
O = ∅. We can choose the first feature randomly or accord-
ing to some simple rules since no information about the test
point is available. Let φO(x) denote the measurement values
obtained about the test point and we set the unmeasured fea-
ture values to be 0 1, φO(x) = 0. If a classification is needed
with the current measurements we can simply compute

y = wT
OφO(x), (1)

and decide based on its sign.
Given any measured feature set O, it is not clear how

wT
OφO(x) relates wTφ(x) (a decision when all features are

measured). However, assume we choose the features in O to
produce positive margins on the neighboring training points.
In this scenario, these features will most likely also produce
positive margins on the test point and result in accurate classi-
fication based on (1). To be more concrete, we define a partial
neighborhood N(O) of the test point as the index set of those
training points that are close to φO(x) on the index setO. We
defineN(O) to contain theK nearest neighbors (with respect
to Euclidean distance) of φO(x) in the training set, where K
is a positive natural number.2

Next, define the partial margin of the kth training point in
the neighborhood N(O) based on the current measurement
feature set O as

ηOk = y(k)(wT
OφO(x

(k))), k ∈ N(O). (2)

If ηOk is positive then (1) will give correct classification based
on the measured feature setO. Similarly, define the one-step-
ahead partial margin of the kth training point in the neighbor-
hood N(O) based on the current measurement feature set O
and feature i as

ηOi,k = y(k)(wT
OφO(x

(k)) + wiφi(x
(k))), k ∈ N(O), i ∈ O.

(3)
To estimate classification accuracy, we define the partial prob-
ability of correct classification of the test point based on cur-
rent measurement feature set O as the ratio of the number

1Note that this is a missing feature classifier. While there has been some
work (see [13]) on learning classifiers robust to missing features, this is out-
side the scope of this paper.

2While there are many ways to define a neighborhood (i.e. based on
thresholding a distance metric between φO(x)’s), we focus on KNN in this
paper
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of correct classification to the total number of training points
within the neighborhood:

pO =
#{k : ηOk > 0}
|N(O)|

. (4)

Similarly we define the one-step-ahead partial probability of
correct classification of the test point based on current mea-
surement feature set O and feature i as

pOi =
#{k : ηOi,k > 0}
|N(O)|

. (5)

At each step, we can decide to measure the next feature or to
stop based on the accuracy estimate pO. And pOi provides an
estimate of how much accuracy we can get by measuring i as
the next feature. We can thus choose the i that gives the best
accuracy-cost trade-off.

3. ALGORITHM

We present our algorithm in Algorithm 1. Notice that feature
cost can be factored in to the decision process naturally. In
Line 13 of the algorithm α represents a trade-off parameter of
the cost with accuracy.

Algorithm 1 Fast Margin-based Cost-sensitive Classification
(FMCC)
1: Train classifier y = wTφ(x) on the entire training data
2: Given a test point x:
3: Measure feature i
4: for t = 1→ d do . Iterate through the total number of features
5: if pO > threshold then
6: Stop, make classification
7: else
8: Compute neighborhood N(O)
9: for i ∈ O do

10: Update partial margins ηOi,k for k ∈ N(O) according to (3)
11: Compute pOi according to (5)
12: end for
13: Select feature imax = argmaxip

O
i − αci to measure next, O ←

(O, imax).
14: Update partial margins ηOk for k ∈ N(O) according to (2)
15: Compute pO according to (4)
16: end if
17: end for

Illustrative Example: We demonstrate our algorithm on
a synthetic example in order to show the effectiveness of our
approach. Here we assume the feature extraction returns the
corresponding components of the data point; in other word,
φ(x) = x. Suppose there are 8 training data points as shown
in Figure 1. The class labels are indicated in red disks (label
−1) and black triangles (label 1), with the weight (number
of repeated training examples) shown besides them. For each
training point, we also display the coordinates. By inspection,
to locate an unknown test point (assuming it follows the dis-
tribution of the training data), the optimal strategy would be

to measure x2, then x1 and lastly x3. We show that our al-
gorithm indeed follows this strategy by simply computing the
margins.

x1
x2

x3

(1,-1,-1)

(-1,1,-1)

(1,1,1)

(-1,1,1)

2

2

3

1

Fig. 1. An example of cost sensitive learning. Given 8 training points,
each is binary with 3 features: x(1) = x(2) = (1,−1,−1), x(3) =
x(4) = (−1, 1, 1), x(5) = (−1, 1,−1), x(6) = x(7) = x(8) =
(1, 1, 1), with labels y(1), . . . , y(4) = −1, y(5), . . . , y(8) = 1. They
are linearly separable with optimal SVM solution y = w′ ∗ x + b =
(0.9995, 1.4998,−0.5002)x− 0.9997

Suppose all the features carry the same measurement cost.
And the partial neighborhood is defined to be those training
points having exactly the same feature values as the test point
on xO. We apply our algorithm sequentially as follows. Step
1. Measuring x1, x2, x3 will give 2 + 2 = 4, 2 + 1 + 3 = 6,
2 + 2 = 4 correct classifications based on (1), respectively.
So measuring x2 will result in higher accuracy. Step 2. Sup-
pose x2 has been measured and it’s equal to -1, there are 2
points in N(O) = {1, 2}. Compute ηO1 = ηO2 > 0 using
(2). So the estimated accuracy pO = 1. Stop and classify,
giving the correct classification. Suppose x2 is measured to
be 1, there are 6 points in N(O) = {3, 4, 5, 6, 7, 8}. As we
contemplate on measuring x1 next, compute ηO1,3 = ηO1,4 >

0, ηO1,5 < 0, ηO1,6 = ηO1,7 = ηO1,8 > 0 using (3). Therefore we
obtain pO1 = 5

6 using (5). Similarly we obtain pO3 = 3
6 . This

suggests measuring x1 next will results in higher accuracy,
which agrees with the optimal strategy.

Analysis: When the full set of features are measured, pO

in (4) is unbiased estimator of the correct classification prob-
ability. The training points in the neighborhood N(O) obey
the probability distribution of the training points. And (4) is
the sample mean of the actual classification accuracy accord-
ing to (1). And we assume all data points are i.i.d hence we
get the result. We can regard pO as a good estimate of the
probability of correct classification in the (finite) limit sense
(when the number of measured features increases to the max-
imum). We can also show our algorithm has extremely low
test time complexity. In fact, it scales linearly in sample size.
There are at most d iterations (the total number of features)
and each iteration involves only O(nd2K) operations, where
K is a constant neighborhood size.
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Fig. 2. Experiment result of classification accuracy vs number of features measured on Letters, LandSat MiniBooNE datasets. FMCC is consistent across all
datasets while the VoC does not perform well on the MiniBooNE dataset.

4. EXPERIMENTS

We evaluate our algorithm on three UCI data sets [14]. To
demonstrate the wide applicability of our algorithm, we base
our algorithm on Boosting for the first two data sets and linear
SVM for the third data set.

Performance Metric: A natural way to evaluate perfor-
mance of budged learning is compare accuracy vs the number
of features acquired. The objective is to achieve high classi-
fication accuracy while acquiring as few features as possible.
We assume acquisition cost for all features is uniform.

Letter Recognition Data Set: This is a multi-class data
set with the goal of distinguishing 26 capital letters in the En-
glish alphabet from a large number of black-and-white rect-
angular pixel displays. Each data point consists of 16 fea-
tures. We randomly draw 200 examples from each letter as
training points and 100 examples as test points and assign the
first 13 letters to one class and the other 13 letters to the other
class. Results are shown from 50 randomly drawn sets of data
to prevent sampling bias. We train a boosted collection of
1000 stumps on the training set, where each stump thresholds
a single feature. Evaluating the stumps for each feature yields
a set of margins. For comparison, we implement the proba-
bilistic model-based Value of Classifier (VoC) algorithm [11],
with the negative of classification loss as the reward function.
We set λ = 0.5 in the locally weighted regression and the
bandwidth parameter β is set to be the median of the dis-
tances from the test point to the training points at each step.
We also compare to a random order scheme, where the next
feature to measure is chosen at random and classification at
each step is computed by (1). We see from Fig. 2 that our
FMCC is close to VoC and outperforms the baseline. For
small budgets (few observed features), VoC achieves higher
accuracy than FMCC, however after measuring 6 features,
FMCC outperforms VoC. This behavior is expected, as the
estimated neighborhood of each example are unreliable when
few features have been observed. Additionally, the FMCC
algorithm is much faster than VoC, which requires solving a
locally weighted least square problem at each stage.

Number of measured features
1 5 10 15 20 25 30 35 40 45 50

65 Act .503 .663 .746 .847 .881 .888 .895 .895 .895 .890 .895
Est .513 .657 .763 .868 .908 .914 .918 .920 .917 .905 .910

125 Act .503 .672 .769 .870 .883 .887 .888 .891 .891 .882 .895
Est .514 .653 .778 .884 .902 .907 .910 .910 .907 .895 .909

185 Act .503 .676 .779 .875 .879 .883 .884 .889 .892 .879 .895
Est .513 .647 .783 .887 .897 .901 .904 .904 .901 .888 .909

Table 1. The actual and estimated probabilities of correct classification for
neighborhood sizes 65, 125 and 185.

Landsat Satellite Data Set: The Landsat data set con-
tains 4435 and 2000 training and test points, respectively.
Each data point is 36-dimensional satellite image features and
belongs to 1 of 6 classes of soil. We consider binary classi-
fication by assigning the first 3 classes to class −1 and the
other 3 classes to class 1. We train a boosted collection of
1000 stumps on the training set, where each stump thresholds
a single feature. Fig. 2 shows that FMCC outperforms VoC
after 4 feature measurements and outperforms the baseline,
which gives similar result as in the Letters dataset.

MiniBooNE Particle Identification Data Set: The Mini-
BooNE data set is a binary classification task, with the goal
of distinguishing electron neutrinos (signal) from muon neu-
trinos (background). Each data point consists of 50 experi-
mental particle identification variables (features). We train a
linear SVM on 1000 training points randomly chosen, with
an equal number drawn from each class. The test classifi-
cation accuracy is evaluated by randomly drawing 300 data
points from each class and the results are averaged over 50
cross validations. Fig. 2 shows that FMCC achieves higher
classification accuracy than VoC and the random schemes for
any given number of measured features (cost) greater than 2.
We believe that VoC performs poorly on this data set as the
features are poorly modeled by a mixture of Gaussian distri-
butions.

In Table 1 we also compare the partial probability of cor-
rect classification pO (See Eq(4)), against the actual test clas-
sification accuracy across different neighborhood sizes. We
observe that pO in our algorithm provides a good estimate
of the true probability of correct classification thus it can be
used reliably for accuracy-cost trade-off. Furthermore, it also
shows our algorithm is robust to the neighborhoodN(O) def-
inition.
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[10] Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell,
“A reduction of imitation learning and structured predic-
tion to no-regret online learning,” in Proceedings of the
Fourteenth International Conference on Artificial Intel-
ligence and Statistics (AISTATS-11), Geoffrey J. Gordon
and David B. Dunson, Eds. 2011, vol. 15, pp. 627–635,
Journal of Machine Learning Research - Workshop and
Conference Proceedings.

[11] T. Gao and D. Koller, “Active classification based on
value of classifier,” in Advances in Neural Information
Processing Systems (NIPS 2011), 2011.

[12] Yoav Freund and Robert E Schapire, “A decision-
theoretic generalization of on-line learning and an ap-
plication to boosting,” Journal of Computer and System
Sciences, vol. 55, no. 1, pp. 119 – 139, 1997.

[13] Laurens Maaten, Minmin Chen, Stephen Tyree, and
Kilian Q. Weinberger, “Learning with marginalized
corrupted features,” in Proceedings of the 30th In-
ternational Conference on Machine Learning (ICML-
13), Sanjoy Dasgupta and David Mcallester, Eds. 2013,
vol. 28, pp. 410–418, JMLR Workshop and Conference
Proceedings.

[14] K. Bache and M. Lichman, “UCI machine learning
repository,” 2013.

2980


