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ABSTRACT

We propose a novel approach for designing kernels for sup-

port vector machines (SVMs) when the class label is linked to

the observation through a latent state and the likelihood func-

tion of the observation given the state (the sensing model) is

available. We show that the Bayes-optimum decision bound-

ary is a hyperplane under a mapping defined by the likelihood

function. Combining this with the maximum margin principle

yields kernels for SVMs that leverage knowledge of the sens-

ing model in an optimal way. We derive the optimum kernel

for the bag-of-words (BoWs) sensing model and demonstrate

its superior performance over other kernels in document and

image classification tasks. These results indicate that such

optimum sensing-aware kernel SVMs can match the perfor-

mance of rather sophisticated state-of-the-art approaches.

Index Terms— Sensing model, Kernel method, SVM,

Bag of Words, Supervised Classification

1. INTRODUCTION

This paper presents a new provably optimum method for de-

signing kernels for SVMs that explicitly incorporates infor-

mation about the structure of the underlying data generating

process. We consider the typical classification task where

the observed data point x ∈ X and label y follow some

joint distribution p(x, y). In many real world problems, how-

ever, observations x are only indirectly related through some

generative process to latent variables z ∈ Z via a sensing

model p(x|z) and the latent variables have different distribu-

tions conditioned on the underlying label y. An example of

such a situation is medical tomography, where the acquired

data x consists of X-ray based projections but the diagnosis is

done on reconstructed cross-sections of the body z to deter-

mine the presence or absence of a disease y. Another exam-

ple is the classic “Bag-of-Word” (BoW) modeling paradigm

widely-used to model text documents, images, etc. [1][2],

where the observed document x is modeled as a collection

of iid drawings of words from a latent document-specific dis-

tribution z over the vocabulary. This z is, in turn, related to

the document category y through an unknown p(z|y).
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For supervised classification, a generative approach

would make further assumptions on p(z|y) which may ei-

ther not hold or lead to an intractable posterior inference

problem [3]. On the other hand, the classical distribution-free

discriminative paradigm would ignore knowledge of the sens-

ing model p(x|z) and build classifiers using labeled training

data [4, 5]. Yet another approach is a decoupled two-step

process where the latent states are first estimated as ẑ(x)
using the sensing model and then a classifier is built based

on (ẑ, y) pairs. Computing estimates, however, can be costly

and can introduce confounding artifacts when data is limited

or noisy, and may be unnecessary if the ultimate goal is a

simple decision.

Motivated by such problems, we start by examining the

structure of the Bayes-optimum classifier, focusing on binary

classification, and then connect it to kernel SVMs via the

max-margin principle. Our proposed “sensing-aware” kernel-

design arises as the natural consequence of such a procedure.

We illustrate the approach on the BoW model and demon-

strate its merits on document and image classification tasks.

2. OPTIMUM SENSING-AWARE KERNEL

Let y ∈ {−1,+1}, z ∈ Z , and x ∈ X denote the class label,

latent variable, and observation respectively. x and y are in-

dependent conditioned on z and the sensing model p(x|z) is

known. We make the following technical assumptions on the

joint distribution which are satisfied in many applications.

Assumption 1: (Square-integrability)∀x, y, p(x|z), p(z, y) ∈
L2(Z) as functions of z.

Assumption 2: (Uniform boundedness) There exists R ∈
[0,∞) such that supx,z |p(x|z)| ≤ R.

Further, let 〈f, g〉Z :=
∫

Z
f(z)g(z)dz denote the usual inner

product in L2(Z) which induces the norm ‖f‖2
Z

, 〈f, f〉Z .

Let ‖f‖1 ,
∫

Z
|f(z)|dz denote the ℓ1-norm in L2(Z).

When full knowledge of the generative model p(x, y)
is available, it is well known that the Maximum Aposteriori

Probability (MAP) estimator of the class label minimizes the

error probability, i.e., the Bayes risk. For binary classifica-

tion, this reduces to a simple likelihood ratio test (LRT):

p(y = 1|x)
1
≷
−1

p(y = −1|x) (1)
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Using p(x, z, y) = p(x|z)p(z, y) and marginalizing over z

the LRT (1) reduces to,

〈p(x|z), w(z)〉Z
1

≷
−1

0 (2)

where w(z) := p(z, y = 1)− p(z, y = −1). Note that w(z)
satisfies the following constraint

‖w(z)‖1 ≤ ‖p(z, y = 1)‖1 + ‖p(z, y = −1)‖1 = 1.

Theorem: If we interpret p(x|z) and w(z) as vectors (func-

tions of z with x held fixed) in L2(Z), then the Bayes-optimal

rule (2) is a linear classifier in L2(Z) defined by the separat-

ing hyperplane w(z).
When a set of training samples {xi, yi}Mi=1 that are gen-

erated from p(x, y) in an iid fashion are given, and w(z) is

unknown, the popular max-margin principle advocates us-

ing the hyperplane w∗(z) that maximizes the separation, i.e.,

a (soft) margin, between the two classes. This max-margin

hyperplane w∗(z) is the optimal solution of the following

(infinite-dimensional) constrained optimization problem

w∗(z) = argmin
w(z)∈L2(Z),ξi

1

2
‖w(z)‖2Z + C

N
∑

i=1

ξi

such that yi〈p(xi|z), w(z)〉 ≥ 1− ξi, ξi ≥ 0

‖w(z)‖1 ≤ 1
(3)

And the optimum classifier is then given by

f∗(x) = sign (〈p(x|z), w∗(z)〉) .

If we write w∗(z) =
M
∑

i=1

βip(x
i|z) + w⊥(z), where w⊥ is

orthogonal to the linear span of {p(xi|z)}
M
i=1, and ignore the

constraint ‖w(z)‖ ≤ 1, the optimization problem (3) reduces

to

min
βi,ξi,w⊥

1

2

M
∑

i,j=1

βiβjK(xi,xj) + ‖w⊥‖22 + C

N
∑

i=1

ξi

such that yi
M
∑

j=1

βjK(xi,xj) ≥ 1− ξi, ξi ≥ 0

(4)

where

K(x,x′) , 〈p(x|z), p(x′|z)〉 =

∫

Z

p(x|z)p(x′|z)dz. (5)

Note that the optimal solution of (4) has w⊥ = 0 mak-

ing it a finite-dimensional constrained optimization problem.

Equation (4) is, in fact, a kernel SVM problem with the kernel

defined by equation (5). We will refer to (5) as the “sensing-

aware kernel” in what follows. The optimal classifier f∗(x)
corresponding to the solution to 4 has the following form

f(x) = sign

(

n
∑

i=1

β∗
i K(x,xi)

)

. (6)

The sensing-aware kernel thus provides a principled way

to incorporate the partial information about the generative

model p(x|z). For a wide range of p(x|z), K(x,x′) has a

closed form expression and can be calculated efficiently. In

this paper, we focus on the BoW generative model.

Remark 1: If t(x) is a sufficient statistic for z, i.e., x −
t(x) − z is a Markov chain, then t(x) can replace x in the

above analysis and the resulting kernel SVM will have the

kernel K(x,x′) =
∫

Z
p(t(x)|z)p(t(x′)|z)dz.

Remark 2: There is a vast literature dedicated to kernel

methods for classification[5]. While the standard RBF ker-

nel works well in many problems, various kernels have been

designed for specific tasks. Among them, a line of work on

model-based kernels is related to our approach in the sense

that knowledge of a generative model is utilized. The Proba-

bility Product Kernel (PPK) proposed in [6] first estimates la-

tent variable ẑi using observation x
i and defines the kernel in

terms of the estimate as K(xi,xj) :=
∫

X
p(x|ẑi)p(x|ẑj)dx.

Heat or Diffusion kernels (Diff) that exploit the Fisher infor-

mation metric on the probability manifold were proposed in

[7]. Kernels based on the KL divergence were proposed in

[8]. Although each approach has its own strength, unlike ours,

the aforementioned probabilistic kernels are not designed to

directly minimize the classification error. Moreover, they

require full model knowledge which is unreasonable for large

and complex datasets like text or images.

3. KERNEL FOR BAG OF WORDS MODELS

In the “Bag of words” (BoW), or “Bag of Features” (BoF)

model, there is a collection of documents composed of words

from a vocabulary of size W . Each document is modeled as

being generated by N i.i.d drawings of words from a latent

W × 1 document word-distribution vector z. Since the order-

ing is ignored, a document is represented as a W×1 empirical

word-count vector x = (x1, . . . , xW )T . Therefore, p(x|z) is

a multinomial distribution

p(x|z) =

(

N

x1, . . . , xW

) W
∏

w=1

zxw

w

From this it can be shown that the sensing kernel for two doc-

uments xi,xj defined in 5 has the following form,

K(xi,xj) =

W
∏

w=1

Γ(xi
w + xj

w + 1)

Γ(xi
w + 1)Γ(xj

w + 1)

Γ(Ni + 1)Γ(Nj + 1)

Γ(Ni +Nj +W )

=
W
∏

w=1

(xi
w + xj

w)!

(xi
w)!(x

j
w)!

Ni!Nj!

(Ni +Nj +W − 1)!

(7)

where Ni is the number of words in the i-th document and

Γ(t) is the ordinary Gamma function. One practical concern

is the size of the factorials. Typically, W is a large constant

and Ni varies across documents. Therefore, the product of

factorials will have a large dynamic range and lead to over-

flow errors (even for small W ). The product is sensitive to the

differences in the Ni values across documents. These issues

can be addressed by using one of the following approxima-

tions to the original kernel 7.
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• Sensing 0 kernel: K0(xi,xj) := log(K(xi,xj)).

• Sensing 1 kernel: Following (7),

K1
n(x

i,xj) := log

{

W
∏

w=1

Γ(nx̄i
w + nx̄j

w + 1)

Γ(nx̄i
w + 1)Γ(nx̄j

w + 1)

}

where x̄
i := x

i/Ni is the word-frequency (normalized

word-count) and n is set to be some constant.

• Sensing 2 kernel: K2
N(xi,xj) = log(K(x̂i

N , x̂j
N ))

where x̂
i
N are the words counts obtained by randomly

resampling the i-th document, uniformly, N times.

In general, these approximations balance the number of words

of documents and avoid numerical issues by a log-mapping

that compresses the dynamic range. In typical experimental

settings, we have found that these approximations yield simi-

lar performance.

4. DOCUMENT CLASSIFICATION

In this section, we consider the problem of text document

classification. In this application context, the terms “word”,

“vocabulary”, and “document” have their natural meanings.

We selected the 20 Newsgourps dataset which contains 18774

news postings from 20 newsgroups (classes) to test perfor-

mance. The average number of words per document in this

dataset is 117. Following standard practice [9], we removed a

standard list of stop words from the vocabulary.

4.1. Binary Classification

We chose to distinguish postings in the newsgroup alt.atheism

from talk.religion.misc. This is a difficult task due to the sim-

ilarity of content in these two groups [3, 10]. The training set

contains 856 documents and the test set contains 569 docu-

ments. The average number of words per document is 132.

Table 1. Binary classification accuracy for alt.atheism vs.

talk.religion.misc in the 20 Newsgroups dataset.

Method CCR % Method CCR %

Sensing1 SVM 82.07 RBF SVM 78.91

Sensing2 SVM 83.35 DiscLDA [3] 83.00

PPK SVM[6] 81.02 G-MedLDA [10] 83.57

Diff SVM [7] 79.96

We used LIBSVM [11] to train our kernel SVMs. We

report results only for the Sensing 1 and Sensing 2 approxi-

mations of our sensing-aware kernel since in this dataset, the

number of words Ni varies significantly across documents.

Table 1 compares the Correct Classification Rate (CCR %)

of the proposed sensing-aware kernels against two model-

based kernels, PPK and Diff, and the baseline RBF kernel.

Table 1 also shows results for a discriminative Latent Dirich-

let Allocation method (denoted by DiscLDA) [3] and a re-

cent method that is based on a max-margin supervised topic

model (denoted by G-MedLDA) [10]. Both of these methods

posit more complex models and represent the current state-

of-the-art. The free model parameters such as n and N in

sensing kernels 1 and 2, t in Diff, and σ in the RBF kernel,

were tuned using a 5 fold cross-validation. The CCR for the

Gibbs MedLDA method is for the best number of topics k as

in [10]. Words in the test set that were not in the training set

were dropped.

We can see that the proposed Sensing 1 and 2 kernels

outperform the RBF kernel and the model-based kernels PPK

and Diff. Surprisingly, the performance of our very simple

method is better than that of DiscLDA and is almost the same

as that of G-MedLDA (with only 1 less document correctly

classified). These state-of-the-art methods make use of fairly

complex models and require sophisticated inference algo-

rithms while our sensing-aware kernel SVM makes minimal

modeling assumptions and has much lower time complexity.

4.2. Multi-class Classification

We next studied multi-class classification in the 20 News-

groups dataset with all 20 classes. We adopted a widely used

training/test split where the training set consists of 11,269

documents, and the test set consists of 7,505 documents. We

used the “one-versus-all” strategy following [10] to do multi-

class classification with binary classifiers. We followed the

same settings as in the binary case. For the Sensing 1 and

2 kernels, we used n = N = 150. Table 2 shows the CCRs

for the proposed sensing-aware kernels, the RBF baseline, the

two model-based kernels PPK and Diff, and the G-MedLDA

[10] algorithm. Also shown is the CCR for a recently de-

veloped deep learning method based on a Restricted Boltz-

mann Machine (RBM) [12] which outperforms the standard

RBF SVM. Deep learning has recently emerged as a power-

ful generic approach and has attained state-of-the-art perfor-

mance in many applications. Since [12] uses the same train-

ing settings, we simply quote the results reported in that pa-

per. Observe that the approximate Sensing kernels 1 and 2

Table 2. Multi-class classification accuracy for the 20 News-

groups dataset.

Method CCR % Method CCR %

Sensing1 SVM 79.5 RBF SVM 75.9

Sensing2 SVM 80.5 RBM [12] 76.2

PPK SVM[6] 78.2 G-MedLDA [10] 80.9

Diff SVM [7] 78.0

outperform all other kernel SVMs and the RBM. As in binary

classification, their performance is close to the G-MedLDA

method that uses complex models.

5. IMAGE CLASSIFICATION

In this section, we consider the problem of recognizing image

scene categories. We use the Natural Scene category dataset

first introduced in [2, 13]. This dataset consists of 15 scene

categories, e.g., office, street view, forests, etc., with 200-400

grayscale images in each category (total 4485 images) and an

average image size of 300× 250 pixels.
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5.1. Modeling Images as Bags of Features

There is extensive literature on BOF models for images.

A typical model consists of 1) local feature extraction, 2)
visual-vocabulary construction, and 3) image representation

as BoFs. In order to highlight the effect of kernels, we follow

the baseline approach proposed in [2, 13, 14].

1) Local feature extraction. For each image, the SIFT descrip-

tors of all the 16 × 16 image patches centered at grid points

spaced 8 pixels apart are computed.

2) Visual vocabulary construction. D patches are randomly

selected from training images. W -means clustering is per-

formed over the corresponding D SIFT descriptors. The W
mean vectors form a visual vocabulary, labeled as 1, . . . ,W .

3) BoF representation. For each image, the SIFT descriptor

of each patch is assigned the label of its nearest neighbor in

the visual vocabulary. An image is then a collection of vi-

sual words from the vocabulary and the spatial correlation is

ignored.

To incorporate spatial structure, we use the pyramid

matching scheme proposed in [13]. This uses a sequence

of coarse-to-fine grids. At level L, an image is split into

2L × 2L non-overlapping cells, and each cell is treated as a

separate “document”. Hence, at level L, each image x
i is

represented as a collection of 22L word-frequency vectors

{xi
L,c, c = 1, . . . , 22L}, ordered according to the spatial po-

sition of the cell. The kernel at level L for two images xi,xj

is defined as KL(xi,xj) =
∑22L

c=1 κ(x
i
L,c,x

j
L,c), where κ is

the kernel function for two BoF documents.

The above kernel is only for a single level. The pyra-

mid kernel K for two images is defined as a weighted sum of

single-level kernels: K(xi,xj) =
∑L

l=0 α
lK l(xi,xj). We

use the same weighting factors αl as in [13].

5.2. Experimental Results

We follow the settings in [13, 2]. We set the vocabulary size as

W = 400. We randomly select 100 images per class for train-

ing and leave the rest for testing. We repeat experiments 10

times with a randomly selected training/testing split for each

run. We use the “one-versus-all” strategy for multi-class clas-

sification and report the average CCR over 10 random runs.

Following [13], we consider three setups. “L = 0, single”

uses K0 as the kernel for classification. This simply views the

entire image as a document. Similarly, “L = 2, single” uses

K2 as the kernel for classification. In this case, the image

is divided into 22L = 16 regions. “L = 2, Pyramid” uses

K =
∑2

l=0 α
lK l as the kernel value.

We compare our Sensing 0 and Sensing 2 kernels with

the probabilistic model-based PPK and Diff kernels and the

standard RBF kernel. We also compare with the classic Spa-

tial Pyramid (SP) kernel of [13]. This kernel is specially

crafted for this problem and has good empirical performance

in several Computer Vision tasks. We also consider a recent

work called Reconfiguration BoW (RBoW), which makes ad-

ditional modeling assumptions on p(z|y). Finally, we con-

sider a recently developed deep learning algorithm [15] (de-

noted by MRF) which achieves state-of-the-art performance

on the same task.

For the Sensing 2 kernel, we simply set N = 500. As

in text classification, all the other free parameters are tuned

by a 5-fold cross-validation. We measure performance using

the overall classification accuracy (CCR %). The results are

summarized in Table 3. Since the settings are identical, we

simply quote the results for MRF and RBoW as reported in

[15] and [16] respectively.

Table 3. CCR % for the scene category database for the three

different settings

L = 0,single L=2, single L=2,Pyramid

Sensing 0 72.3 79.1 80.7

Sensing 2 72.9 79.7 81.3

PPK [6] 73.6 77.7 78.6

Diff [7] 74.7 77.1 77.8

RBF 65.6 72.2 73.5

SP [13] 74.8 79.3 81.4

RBOW [16] N/A 78.6 N/A

MRF [15] 81.2

We can see that in the “L = 2, single-level” setting, the

proposed Sensing kernel 2 clearly improves over the classic

kernel SP and outperforms other kernels (RBF, PPK and Diff)

as well as the more complex RBoW method. However in the

“L = 0 single-level” setting, the sensing-aware kernels do

perform worse than PPK, Diff, and SP. This could be because

L = 0 corresponds to the whole image. It has been strongly

suggested in the Computer Vision literature that modeling the

entire image as a BoF is unrealistic in many datasets [14] [13].

Our proposed sensing-aware approach only makes sense if the

data is actually generated from the sensing structure. Our ex-

perimental results accord with the fact that BoF is a reason-

able model for local regions, but not for the entire image.

We also did experiments for the “L = 2, pyramid” set-

ting. We can see that the Sensing 2 kernel achieves almost the

same performance as the state-of-the-art SP and MRF. The

improvement is not as significant as in the “L = 2 single-

level” case. This could be because it involves the L = 0 level

kernel values, which does not fit the BoF model well.

6. CONCLUSION

In this paper, we proposed a novel kernel design principle to

incorporate partial model information. On two distinct types

of data, we showed that with minimal modeling assumptions,

the sensing-aware kernel improves upon other standard ker-

nels and handcrafted kernels for specific domains. We also

observed that the sensing-aware kernel can match the perfor-

mance of the state-of-the-art approaches.

2974



7. REFERENCES

[1] D. Blei, “Probabilistic topic models,” Commun. of the

ACM, vol. 55, no. 4, pp. 77–84, 2012.

[2] Fei-Fei Li and P. Perona, “A bayesian hierarchical

model for learning natural scene categories,” in Pro-

ceedings of the 2005 IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition

(CVPR’05), San Diego, CA, Jun. 2005, pp. 524–531.

[3] S. Lacoste-Julien, F. Sha, and M. Jordan, “Disclda: Dis-

criminative learning for dimensionality reduction and

classification,” in Advances in Neural Information Pro-

cessing Systems 21(NIPS’09), pp. 897–904. 2009.

[4] V. N. Vapnik, The nature of statistical learning theory,

Springer-Verlag New York, Inc., New York, NY, USA,

1995.

[5] T. Hastie, R. Tibshirani, and J. Friedman, Elements of

Statistical Learning, Springer-Verlag New York, Inc.,

New York, NY, USA, 2009.

[6] T. Jebara, R. Kondor, and A. Howard, “Probability prod-

uct kernels,” J. Mach. Learn. Res., vol. 5, pp. 819–844,

Dec. 2004.

[7] J. Lafferty and G. Lebanon, “Diffusion kernels on sta-

tistical manifolds,” J. Mach. Learn. Res., vol. 6, pp.

129–163, Dec. 2005.

[8] Pedro J. Moreno, Purdy P. Ho, and Nuno Vasconce-

los, “A kullback-leibler divergence based kernel for

svm classification in multimedia applications,” in Ad-

vances in Neural Information Processing Systems 16

(NIPS’03). 2004.

[9] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “Rcv1:

A new benchmark collection for text categorization re-

search,” J. Mach. Learn. Res., vol. 5, pp. 361–397, Dec.

2004.

[10] J. Zhu, N. Chen, H. Perkins, and B. Zhang, “Gibbs max-

margin topic models with fast sampling algorithms,” in

the 30th Int. Conf. on Machine Learning (ICML’13), At-

lanta, GA, Jun. 2013.

[11] C. Chang and C. Lin, “LIBSVM: A library for support

vector machines,” ACM Transactions on Intelligent Sys-

tems and Technology, vol. 2, pp. 27:1–27:27, 2011.

[12] H. Larochelle, M. Mandel, R. Pascanu, and Y. Ben-

gio, “Learning algorithms for the classification re-

stricted boltzmann machine,” J. Mach. Learn. Res., vol.

13, pp. 643–669, Mar. 2012.

[13] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of

features: Spatial pyramid matching for recognizing nat-

ural scene categories,” in Proceedings of the 2006 IEEE

Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’06), New York, NY, Jun.

2006, pp. 2169–2178.

[14] K. Grauman and T. Darrell, “The pyramid match ker-

nel: Discriminative classification with sets of image

features,” in Proc. the 10th IEEE International Con-

ference on Computer Vision(ICCV’05), Beijing, China,

Oct. 2005, pp. 1458–1465.

[15] M. Ranzato, V. Mnih, J.M. Susskind, and G.E. Hin-

ton, “Modeling natural images using gated mrfs,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 35, no. 9, pp.

2206–2222, 2013.

[16] Sobhan Naderi Parizi, John Oberlin, and Pedro F.

Felzenszwalb, “Reconfigurable models for scene recog-

nition,” in Proceedings of the 2012 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR),

2012, pp. 2775–2782.

2975


