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ABSTRACT

To meet the demand of clustering high dimensional data efficiently,

in this paper, we propose a component-wise expectation conditional

maximisation (CW-ECM) algorithm and integrate it within the re-

cent proposed splitting-while-merging framework, which is called

splitting-merging awareness tactics (SMART), for the mixture of

factor analysers (MFA) model. The new algorithm has two advan-

tages: it has ability to converge to actual or close actual number

of clusters by a splitting-while-merging strategy, and it avoids the

local maxima effectively and efficiently. Furthermore, we improve

the splitting strategy in the original SMART framework and save

more computational effort. We test out algorithm in two bench-

mark datasets and compare it with the state-of-the-art algorithms

using many validation metrics. The results show that the proposed

algorithm outperforms the compared algorithms in clustering perfor-

mance with significantly less computational complexity.

Index Terms— mixture of factor analysers (MFA), SMART, ex-

pectation maximisation (EM), expectation conditional maximisation

(ECM)

1. INTRODUCTION

Clustering data based on a measure of dissimilarity or similarity be-

tween data objects has been one of critical parts in scientific data

analysis and engineering applications [1–5]. In the rich literature

of clustering algorithms, model-based clustering is one of the most

popular clustering families [1, 6–8]. Finite mixture models (FMM)

have provided a statistical base for modelling multivariate data in a

wide variety of random phenomena [6]. However, the vital prob-

lem for the widely used Gaussian mixture model is that it is a highly

parametrized model with [ 1
2
p(p − 1)] parameters for each compo-

nent covariance matrix, where p is the dimensionality of the data.

This fact limits the practical use of Gaussian mixture model in many

applications, where people have to deal with high-dimension data,

for example, gene expression data analysis or image processing.

Mixture of factor analysers (MFA) has been used to fit a mixture

of Gaussians to correlate high dimensional data without requir-

ing O(p2) parameters [9–16]. Expectation maximisation (EM),

which maximises the likelihood by iterating E(xpectation) and

M(aximisation) steps, has been employed to fit MFA by Ghahramani
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and Hinton [9]. It converges stably since its M step takes the closed

form of the likelihood function. However, the cost of such stability

is its slow convergence speed [16]. Meng and van Dyk developed an

alternative expectation conditional maximisation (AECM) to attain

a trade-off between stability and convergence [10]. McLachlan and

colleagues developed a software called EMMIX-GENE employing

the MFA model and AECM algorithm for clustering large dimen-

sional microarray gene expression data [12, 14]. McNicholas and

Murphy devised a class of eight parsimonious Gaussian mixture

models based on the MFA model and AECM algorithm, by im-

posing different constraints on the loading matrices and covariance

structure [15]. Zhao and Yu proposed a fast ECM algorithm for the

MFA model, by only treating the component-indicators as missing

data [13, 16]. These algorithms have been demonstrated to provide

notably good performance in dealing with large dimensional data,

however, there are two critical issues remaining unsolved: (1) these

algorithms highly depend on the setting of the a prior knowledge of

the number of models, which is unrealistic; and (2) it is well known

that EM and its derivatives may get stuck in local maxima easily.

To this end, a splitting-while-merging (SWM) clustering frame-

work, named splitting-merging awareness tactics (SMART), was

proposed in [17, 18]. Especially in [18], SMART-FMM was pro-

posed to integrate the component-wise EM (CW-EM) algorithm,

which was originally proposed by Celeux [19] and modified by

Figueiredo and Jain [20], into the SWM framework. The benefits of

using CW-EM come, firstly, from its feature of avoiding the local

minima [20] and secondly from its ability to eliminate those weak

models automatically. The SWM framework performs a top-down

process without the requirement of pre-defined number of clusters

(components) or an upper bound of this number. Integrating CWEM

into the SWM framework meets the requirement of the clustering

analysis and outperforms the counterpart algorithms [18, 21].

In this paper, we develop the component-wise expectation con-

ditional maximisation (CW-ECM) algorithm for the SMART frame-

work with the MFA model. The CW-ECM algorithm updates each

component with two-stage process – E step and CM steps – in paral-

lel. We design the CW-ECM algorithm following the suggestion by

Zhao and Yu that only treating component indicators as missing data

may accelerate the convergence speed. [13, 16]. Moreover, we im-

prove the splitting strategy in the original SMART framework so that

the algorithm selects candidates for splitting more efficiently. We

test our algorithm in two benchmark datasets, one of which is an ar-

tificial dataset and another one is a real gene expression dataset. We

compare it with the state-of-the art algorithms, namely EM, AECM

and ECM algorithms for the MFA models. The numerical results
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show that the proposed algorithm outperforms the compared algo-

rithms in clustering performance with significantly less computa-

tional complexity.

The rest of the paper is organized as follows: Sec. 2 reviews the

MFA model and the SMART framework respectively. In Sec. 3, we

detail the principle of the proposed SMART-MFA and the CW-ECM

algorithm. In Sec. 4, we conduct experiments and present the result

comparison between the proposed algorithm and the state-of-the-art

algorithms. Finally, conclusions and discussion are given in Sec. 5.

2. MFA MODEL AND SMART FRAMEWORK

In this section, we briefly review previous works in the MFA model

and the SMART framework in separate subsections, respectively.

2.1 MFA Model

2.1.1 MFA Model

The MFA is a mixture of G FA submodels with mixture proportions

{πg}
G
g=1 and the constraint

∑G

g=1 πg = 1. Thus, given label g for

g-th submodel, the observed data vector xn is modelled as

xn = Bgugn + µg + ǫgn, (1)

where Bg is a p × q factor loading matrix, ugn is a q-dimensional

latent factor vector following N (0, Iq), where Iq is an identity

matrix with q dimensions. µg is a p-dimensional mean vector,

and ǫgn ∼ N (0,Ψg), where Ψg is a positive diagonal ma-

trix diag{ψg1, ..., ψgp}. Thus, xn is distributed as N (Bgugn +
µg,Ψg) conditioned on ugn, or is distributed as N (µg,Σg) uncon-

ditionally, where the covariance matrix Σg = BgB
T
g +Ψg . Com-

paring with the general Gaussian model with [p+p(p−1)/2] free pa-

rameters for each submodel, the MFA model has [pq+p−q(q−1)/2]
free parameters. If q is chosen sufficiently smaller than p, some con-

straints are imposed on the covariance matrix Σg and the number of

free parameters to be estimated are significantly reduced.

The probability density function (pdf) of the observed data byG
mixtures of FAs is given by

p(xn|Θ) =

G
∑

g=1

πgφ(xn|µg,Σg). (2)

where φ(·) is the pdf of multivariate normal distribution, Θ denotes

the parameter set {{µg}
G
g=1, {Bg}

G
g=1, {Ψg}

G
g=1, {πg}

G
g=1}.

2.1.2 Maximum Likelihood Estimation

Let us denote Z = {zn}
N
n=1 as latent label indicators, where zn =

{zn1, zn2, ..., znG}, where zng = 1 if xn belongs to group g and

zng = 0 otherwise. U = {un}
N
n=1 is a set of latent factor vectors.

They are missing data to be estimated in the clustering problem. The

complete log-likelihood is given by

L(X,U ,Z|Θ) =

N
∑

n=1

G
∑

g=1

zng ln
[

πgφ(xn|µg,Σg)
]

. (3)

The EM algorithm and its derivatives, namely ECM and AECM,

has been widely used to find maximum likelihood (ML) estimates

of Z, U and Θ for the MFA model. The general EM algorithm

performs an E step and an M step iteratively. In E step, it calculates

the expected L with given Θ and in M step it maximises L with

respect to (w.r.t.) Θ. The ECM and AECM algorithms share the

similar idea that the M step of the general EM algorithm is replaced

by a number of computationally simpler conditional maximization

(CM) steps.

2.2 SMART Framework

In this part, we emphasize two critical points of the SMART frame-

work, which are the splitting-while-merging (SWM) strategy and the

component-wise EM (CW-EM) algorithm [17, 18]. Due to the page

limit, we cannot fully describe the whole framework. The interested

readers are referred to [17, 18] for the details.

The SMART framework employed an SWM strategy. While

splitting, a merging process is also taking place to merge the clus-

ters which meet the merging criterion. In such a process, SMART

has self-awareness to split and merge clusters automatically in iter-

ations. To do so, many clustering tasks have to be performed. In

the splitting task of each iteration (Task 2 in [17,18]), SMART splits

one cluster into two. Then, the new clusters are tested by a merging

criterion which is called merging task (Task 3 in [17, 18]). If any

pair of clusters meet the merging criterion, we merge the two clus-

ters, otherwise skip the merging step. Then SMART goes through

a termination-check, where a stopping criterion is applied. If the

condition for termination is not satisfied, SMART goes to the next

iteration and continues to split, otherwise, SMART finishes SWM

process. The last step is clustering selection task (Task 4 in [17,18]).

Minimum message length (MML) [25] was employed in clustering

selection task. In this paper, we also employ MML for clustering

selection task.

Unlike conventional EM algorithm, CW-EM updates the model

parameters {θg|1 ≤ g ≤ G} and the probabilities of components

{πg|1 ≤ g ≤ G} sequentially, rather than simultaneously. In CW-

EM, the estimation is also two-step process, but in each iteration,

only one component has the opportunity to update its parameters.

Thus, strong clusters can thrive and weak clusters lose their members

and vanish eventually. This mechanism does the merging task by

eliminating empty clusters implicitly. By this mechanism, CW-EM

can prevent the algorithm getting stuck into local maxima effectively.

3. SMART-MFA

In this section, we develop the SMART framework with the MFA

model. There are two additional principal contributions over the

original SMART framework [18]. The first, obviously, is the

component-wise expectation conditional maximisation (CW-ECM)

which is designed for the MFA model, and the second is the splitting

strategy which avoids calculating the whole pairwise distances and

makes the splitting more efficient.

3.1 CW-ECM

To estimate the latent label indicators Z conditional on the parame-

ters Θ = {Θg}
G
g=1 = {{µg}

G
g=1 , {Bg}

G
g=1 , {Ψg}

G
g=1, {π}

G
g=1},

the CW-ECM updates each component in parallel with a two-stage

process, that is, E step and CM steps. Suppose that in t-th itera-

tion, for the g-th component, it has parameters Θ̃
(t,g)

= {Θ(t,g)
1

, ...,Θ
(t,g)
g−1 ,Θ

(t−1,g)
g , ...,Θ

(t−1,g)
G } and alternates the steps as

• CW-ECM E-step: Compute for n = 1, ..., N

γgn ≡ E[ẑgn|X, Θ̃
(t,g)

] =
f(xn|Θ̃

(t,g)
g )

∑G

l=1 f(xn|Θ̃
(t,g)
l )

, (4)

where

Θ̃
(t,g)
l =

{

Θ
(t,g)
l If l < g

Θ
(t−1,g)
l If l ≥ g

(5)

Thus, we may obtain

f(xn|Θ̃
(t,g)
l )

=

{

π̂t
lp(xn|µ

(t,g)
l ,B

(t,g)
l ,Ψ

(t,g)
l ) If l<g

π̂
(t−1,g)
l p(xn|µ

(t−1,g)
l ,B

(t−1,g)
l ,Ψ

(t−1,g)
l ) If l≥g

(6)
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• CW-ECM CM-step: Set

Θ
(t,g)
g = argmax

Θ
(t−1,g)
g

{log p(X|Θ̃
(t,g)

)}. (7)

More precisely, (7) can be broken down into many individual

updates as following:

π̂(t,g)
g =

∑N

n=1 γgn
∑G

l=1

∑N

n=1 γln
, (8)

µ
(t,g)
g =

∑N

n=1 γgnxn
∑N

n=1 γgn
, (9)

and

B
(t,g)
g = S

(t,g)
g β

(t,g)
g (β(t,g)T

g S
(t,g)
g β

(t,g)
g +ω(t,g)

g )−1 (10)

where

S
(t,g)
g =

∑N

n=1 γgn(xn − µ(t,g)
g )(xn − µ(t,g)

g )T

∑N

n=1 γgn
,

β
(t,g)
g = (B(t−1,g)

g B
(t−1,g)T

g +Ψ
(t−1,g)
g )−1

B
(t−1,g)
g ,

ω(t,g)
g = Iq − β

(t,g)T

g B
(t−1,g)
g .

Then the updated estimate Ψ
(t,g)
g is given by

Ψ
(t,g)
g = diag{S(t,g)

g − S
(t,g)
g β

(t,g)
g B

(t,g)T

g }. (11)

Note that in all EM algorithms for the MFA models, selecting

the number of loading factors q is arbitrary. In our algorithm, we

search a range of q in [1, qmax].

Table 1. The pseudo-code for SMART-MFA.
Task 1: Initializing SMART with G = 2

Randomly initialize µ̂g , B̂g , Ψ̂g and π̂k for g = 1, 2;
terminate = 0;
while !terminate do

Learning and Merging:
while !converge do

for g = 1 : G do

Use CW-ECM for the learning and merging based on (4)
and (7).
if π̂g → 0 then

Get rid of g-th cluster; G = G− 1;
end if

end for

end while(!converge)
Splitting:
Employ the splitting strategy in Sec. 3.2; G = G+ 1;
if The number of merges is greater than or equal to Nm then

terminate = 1;
end if

end while(!terminate)
Selecting:
Select the best clustering based on MML criterion.

3.2 Splitting Strategy

We improve the splitting strategy in the original SMART framework,

which calculates all pairwise distances in the dataset and performs

a Kauffman approach (KA) style [22] to search for next candidate

to split. Such calculation is huge when the size of the dataset is

merely moderate, say around thousand data objects. We notice that

the likelihood of the given object allocated to the g-th cluster, which

is f(xn|Θg), has been calculated during the EM algorithm, and it

can be used to judge how likely the given object should be allocated

in the cluster. If an object has very small likelihood in every cluster,

there may be two possibilities: one is that the object is an outlier,

and another is that the object belongs to a cluster, which has not been

discovered. Even for an outlier, it may be an outlier near the existing

clusters or near the cluster not been discovered. In the CW-type EM

(or ECM) algorithm, an actual cluster may survive from iteration to

iteration even the initial point is relatively far from its center, on the

other hand, the cluster may vanish if it is not an actual cluster.

Thus, we design our splitting strategy as following few steps:

1. To create a pool to record the splitting candidates has been

selected;

2. To find a data object, which has minimum value of
∑G

g=1

f(xn|Θg) among all objects not in the pool;

3. To assign the data object as the µG+1 of the new (G + 1)-th
cluster, and generate BG+1, ΨG+1, πG+1 randomly, record

the data object in the pool, and G = G+ 1.

To summarise, the pseudo-code of the proposed algorithm is

shown in Table 1.

4. NUMERICAL RESULTS

Here, we describe two benchmark datasets employed to test our

algorithm, and present the experiment setups and numerical re-

sults. Our proposed SMART-MFA algorithm is compared with the

state-of-the-art algorithms for the MFA models, namely EM [9],

AECM [14], and ECM [16] using many validation metrics.

4.1 Datasets

We employ a model similar to the one used in [16] to generate the

artificial dataset. It has N = 600 data objects in R
d(d = 50).

The parameters for generating the datasets are given as G = 3, q =
8,µg = 5g1d×1,Bg = Unif(d, q),Ψg = diag{Unif(d, 1))}, πg =
1
3
, g = 1, ..., G. Here, Unif(a, b) is an a × b uniformly distributed

random number matrix on the unit interval.

The real microarray gene expression dataset consists of 38

bone marrow samples obtained from acute leukaemia patients at

time of diagnosis. There are 999 genes in the dataset [24]. The

biological truth is that the samples include 3 groups: 11 acute

myeloid leukaemia (AML) samples, 8 T-lineage acute lymphoblastic

leukaemia (ALL) samples, and 19 B-lineage ALL samples [23, 24].

4.2 Numerical results

It is worth noting that all state-of-the-art algorithms require the num-

ber of models (clusters) as one of the inputs and cannot automatically

converge to the clustering with the actual or nearly actual number of

clusters. For the sake of a fair comparison, for each dataset, we de-

sign two experimental settings for the compared algorithms: setting

one (S1) is an exhaustive search over a range of numbers of clusters

[2, gmax]; setting two (S2) is that algorithms are given the actual

number of clusters. Both experimental settings search a range of

numbers of factors [1, qmax] and MML is employed as clustering

selection criterion. In this paper, qmax is always set to 10. Consider-

ing that EM-type algorithms may get stuck in the local maxima, we

set Ninit random starting points, half of which are purely random

and the rest are generated by kmeans with random initialisation. All

experiments are run 100 times. We employ many validation met-

ric to validate the clustering results, namely adjusted Rand index

(ARI) [28], Jaccard index (JI) [29] (ARI and JI only for artificial

dataset since the ground truth of membership is know), mean square

error (MSE), MML, Calinski-Harabasz (CH) index [27], Silhouette

index (SI) [26]. The mean and standard deviation of above met-

rics are presented. We also measure correct selection rate (CSR) of

number of clusters, and the statistics of estimated number of clusters

Ĝ. For comparing the complexities, we measure both total iterations

used in each algorithm and total processing time in seconds. For
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Table 2. Performance comparison of all algorithms in the artificial dataset.

Metric
EM AECM ECM

Proposed
S1(10) S2(50) S1(10) S2(50) S1(10) S2(50)

JI 0.8±0.2 1±1.5E-3 0.81±0.2 1±1.5E-3 0.96±0.1 1±1.5E-3 1±2.5E-3

ARI 0.79±0.2 1±3E-3 0.82±0.2 1±3E-3 0.96±0.1 1±3E-3 1±3.3E-3

MSE 9.97E5±8.1E3 1.93E5±1.8E-10 2.85E5±9.8E4 1.93E5±1.8E-10 3.32E5±7.5E4 1.93E5±1.8E-10 1.93E5±7.3E-3

MML 4.84E4±2.3E2 4.34E4±5.8E2 3.72E4±3.1E4 4.34E4±82 4.49E4±3.2E2 4.34E4±5.4E2 4.32E4±1.7E2

Sil 0.89±7.9E-2 0.97±2.1E-15 0.33±0.4 0.97±2.1E-15 0.90±0.2 0.97±2.1E-15 0.97±2.4E-2

CH 169.8±1.3E2 294.2±3.8E-13 91.03±88 294.2±3.6E-13 5.62±1.3 294.2±4.1E-13 291.4±1.1E-4

Ĝ 2.5±0.5 / 8±2.4 / 3.31±1.3 / 3±0

CSR 50% / 14% / 86% / 100%

Inters 6.2E6 4.6E6 6.3E6 4.8E6 7.8E6 5.1E6 2.4E6

Time (s) 2.8E4 1.5E4 2.8E4 1.7E4 2.7E4 1.4E4 1.1E4

Table 3. Performance comparison of all algorithms in Leukemia dataset.

Metric
EM AECM ECM

Proposed
S1(10) S2(50) S1(10) S2(50) S1(10) S2(50)

MSE 2.72E4±2.2E2 2.28E4±15 2.08E4±6.2E2 2.53E4±2.3E2 2.73E4±1.8E3 2.33E4±68 2.28E4±17

MML 4.62E4±1.4E2 4.60E4±3.0E2 3.87E4±1.5E2 4.41E4±1.8E2 4.4E4±1.6E2 4.46E4±4.2E2 4.36E4±45

Sil 0.33±1.2E-2 0.36±7.1E-5 0.26±1.9E-2 0.32±1.3E-2 0.29±5.4E-2 0.33±3.9E-2 0.36±9E-4

CH 6.28±0.3 6.47±1.3E-3 2.91±0.1 6.21±0.1 5.62±1.3 6.43±4.7E-2 6.48±1.4E-3

Ĝ 2±0 / 9.75±0.5 / 2.22±0.5 / 3±0

CSR 0 / 0 / 10% / 100%

Inters 6.1E6 3.6E6 5.9E6 2.9E6 4.4E6 2.1E6 1.8E6

Time (s) 5.6E4 1.6E4 5.5E4 1.6E4 4.5E4 1.3E4 5.5E3

both datasets and all compared algorithms, we set gmax = 10 and

Ninit = 10 for S1 and we set Ninit = 50 for S2. For our proposed

algorithm, we set the maximum times for merging Nm to 20.

The performance comparisons between our proposed algorithm

and all state-of-the-art algorithms in the artificial dataset are shown

in Table 2. We find that the performance of the proposed algorithm is

very similar to those of the state-of-the-art algorithms with S2 which

is given the number of clusters G = 3 and relatively large num-

ber of starting points (Ninit = 50). The proposed algorithm has

slightly higher standard deviations in JI, ARI, MSE, and SI, and has

a bit lower value in CH. Generally speaking, the differences are not

significant. Nevertheless, two facts are worth noting : firstly the pro-

cessing time of the proposed algorithm is much shorter than that of

the compared algorithm, and nearly 30%-40% computational efforts

are saved; secondly, in S2, the actual number of clusters is given

to the compared algorithms while the proposed algorithm does not

need such information, which is not a fair comparison. Let us con-

sider S1, which is a more realistic scenario, all compared algorithms

cannot provide satisfactory performance with comparable complex-

ity. Among the compared algorithms, ECM performs the best and

uses the least processing time. Its performance, however, is much

worse than the proposed algorithm and it takes twice as much pro-

cessing time as the proposed algorithm takes.

Table 3 shows the performance comparisons using real leukae-

mia dataset. In this case, our proposed algorithm performs slightly

better than the state-of-the-art algorithms with S2, but only takes less

than half of their processing time. All compared algorithms with

S1 perform poorly. All these experimental results indicate that the

proposed algorithm outperforms the state-of-the-art algorithms in a

more realistic scenario and provides better results with less compu-

tational complexity.

5. CONCLUSIONS AND DISCUSSIONS

Mixture of factor analysers (MFA) model has been widely used for

modelling large dimensional data and there are many state-of-the-art

algorithms in the literature, namely EM, AECM and ECM. However,

all of them have two vital limitations: 1) need the knowledge of

number of cluster; 2) get stuck in local maxima easily.

In this paper, we proposed a component-wise ECM (CW-ECM)

algorithm and integrated it within the recent reported SMART frame-

work to fit the MFA model. We also modified the splitting strategy

in the original framework so that the proposed algorithm resolves the

aforementioned two issues in an efficient way.

We tested the proposed algorithm in two benchmark datasets

and compared its performance in many different validation metrics

with those state-of-the-art algorithms. The results showed that our

proposed algorithm provided as good performance as the compared

algorithms when they were given the a prior information of num-

ber of clusters and a relatively large number of starting points, but

had significantly less computational complexity. If in S1, which is a

more realistic scenario, all state-of-the-art performed poorly in both

datasets. EM suffered more with local maxima problem and chose

two clusters as the best clustering more often. AECM suffered with

the overfitting problem and always chose clustering with large num-

ber of clusters. Fairly speaking, this problem actually originated

from the MML criterion. The reason why the proposed algorithm

does not have the same problem is that the SWM strategy prevents

the overfitting by merging those unnecessary clusters so that the pro-

posed algorithm seldom reaches that point which makes MML fail.

ECM performed the best among the state-of-the-art algorithms, but

was much worse and more complex than the proposed algorithm.

In the future, we will investigate the proposed algorithm with

more real datasets, especially the gene expression datasets. Our long

term target is to discover biological knowledge buried under massive

collected data by using our proposed algorithm.
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