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ABSTRACT

This paper considers online classification problems where

each object to be classified consists of a sequence of mea-

surements, termed here a track. We present an approach that

combines ideas from sequential hypothesis testing with those

from conformal prediction to address track level outliers - en-

tire measurement sequences that are novel relative to the sta-

tistical model. We show with analysis and empirical results

that this approach preserves the optimal performance of the

underlying sequential hypothesis testing when outliers are ab-

sent and provides an error rate guarantee in the presence of

contamination by novel tracks.

Index Terms— pattern classification, conformal predic-

tion, statistics, robustness.

1. INTRODUCTION

Automated screeners play a key role in many signal process-

ing applications where a noisy sequence of observations taken

from a single object forms the basis for deciding whether the

object belongs to a category of interest (target) or not (clutter).

In the following, we refer to the sequence of measurements

associated with a single object as a track.

There are a number of desiderata and assumptions that ac-

company practical screening applications. Often, target pre-

dictions trigger a costly response by a system operator or

more sophisticated automated system; hence, adherence to a

pre-defined error rate is an important requirement. Exper-

imental conditions often constrain the number of measure-

ments available in each track (e.g. in remote sensing prob-

lems, mobile objects move in and out of sensor detection

range), and therefore track lengths are finite and not known in

advance. Thus, while tracks may be statistically independent,

they are not identically distributed due to length variations.

We also assume the possible presence of outlier tracks that

are drawn from distributions not anticipated at design time.

Finally, we consider an online setting where classifiers are

occasionally provided with the object’s true label following

prediction. The availability of label feedback is a reasonable

assumption in real-time applications where the classifier acts
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as a decision aid in conjunction with an operator. Our goal

is to design an online classification framework that will pro-

vide a theoretical guarantee on pre-defined error rate despite

uncertainty in track length and existence of outlier tracks.

In the case of a single track with two possible class la-

bels, existing theory in sequential hypothesis testing (such as

Wald’s sequential probability ratio test (SPRT) [1]) solves the

track classification problem subject to various constraints on

the decision time and/or Type I and Type II error rates. Robust

variants of these tests address the issue of occasional measure-

ment outliers by clipping extreme test values in accordance

with an assumed model for outlier contamination [2]. These

approaches, however, are not robust to the presence of outlier

tracks as the realized error rates may deviate from designed

limits when entire measurement sequences are mismatched

with the likelihood functions.

Various schemes for detecting and screening track-level

outliers are possible; our approach is motivated by the need

to meet predetermined performance requirements. Conformal

Prediction (CP) is an online framework for classification that

provides control over long-term error rates [3, 4]. CPs gener-

ate sets of possible labels for each object, akin to a confidence

interval. These predictions are created from the outputs of

nonconformity measures, real-valued functions that quantify

how different a new example is from previously seen exam-

ples. Assuming the objects to be classified adhere to a suitable

model of randomness, such as exchangeability, and feedback

is provided sufficiently often, CP theory ensures predictions

contain the true class label for the object (1 − ǫ) percent of

the time in the long run, where ǫ is a user-specified error rate.

Such a CP is said to be valid. Using prediction sets (ver-

sus point predictions) permits “hedging” for more difficult in-

stances; however, predictions containing more than one label

are less informative. Therefore, an important CP metric is effi-

ciency, the rate of unambiguous predictions (predictions with

fewer than two labels).

In this paper, we design a CP with a nonconformity mea-

sure determined by statistics derived from the SPRT. A key

feature of our approach is that it induces an exchangeable se-

quence of objects when tracks are statistically independent,

despite variations in track length (thus ensuring a valid CP).

When the likelihood functions are known, the resulting CP

will be maximally efficient in that it never produces multi-
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label predictions. Furthermore, the CP continues to achieve

the desired error rate in presence of outlier tracks, albeit at

the cost of reduced efficiency.

2. PRIOR WORK

Prior work in robust SPRT includes [2, 5, 6]; more recently,

[7] considered situations where the likelihood functions are

not perfectly known. The authors propose an augmented like-

lihood ratio test that generates confidence intervals to decide

between two Bernoulli hypotheses. The resulting statistical

test terminates only after the entire confidence interval crosses

one of the two decision thresholds. Our approach also utilizes

confidence intervals via the conformal prediction framework

but relies upon exchangeable examples and label feedback in-

stead assuming a specific distributions for the hypotheses. In

[8], the authors consider robust track classification in the case

of dynamic objects whose state is estimated by a Kalman fil-

ter. Prior work in the conformal prediction literature for se-

quence classification includes [9, 10, 11]. Our approach dif-

fers in the use of SPRT (and the associated efficiency proper-

ties); as far as the authors are aware, this choice of CP statistic

has not previously been considered.

3. APPROACH

This section presents our approach to online track classifica-

tion that embeds the SPRT within a CP framework. Consider

an online binary classification problem where a sequence of

objects {x1,x2, . . .} are incrementally provided to a classifier

which must predict the corresponding class labels yi ∈ {0, 1}
based on prior examples zj := (xj , yj), j = 1, . . . , i − 1.

Each track consists of a finite sequence of measurements,

xi = {xi
k : k = 1, . . . , L(xi)}, where L(xi) denotes the

finite length of the track xi. With screening applications in

mind, we refer to tracks with label y = 1 as target and y = 0
as clutter. We also assume (i) the sequence of track objects are

statistically independent but not identically distributed (due

to varying track lengths); (ii) the L(xi) are not known in ad-

vance; and (iii) given the class of a track object, the sequence

of measurements comprising the track are i.i.d. We denote

the class-dependent density functions for the measurements

of track xi by pi(x|yi = 0) and pi(x|yi = 1).
In the ideal case, all tracks have the same class-dependent

measurement-level distributions. However, there may exist

outlier tracks following different measurement-level distribu-

tions. Specifically, for class labels l ∈ {0, 1} and all i:

pi(x|yi = l) =

{

fl(x) with probability 1− π,

f̂l(x) with probability π,

where f0, f1 are clutter and target likelihood density func-

tions, the f̂ ’s are outlier density functions, and π is a small

outlier probability.

3.1. Sequential Detection Review

Sequential detection problems involve deciding between two

hypotheses: the null hypothesis H0 that a sequence of i.i.d.

observations is drawn from distribution Q0 and the alternate

hypothesis H1 that the sequence is instead drawn from a dis-

tinct distribution Q1. Sequential detection problems are often

formulated as optimal stopping problems, where the goal is

to reach a decision after some finite number of observations;

once a decision is made, it is final and no further observations

are considered. Wald’s SPRT formulates the sequential deci-

sion problem as the optimal stopping problem to minimize the

number of measurements required to decide between the hy-

potheses subject to an upper bound on the probability of Type

I and Type II errors. SPRT operates by incrementally comput-

ing a statistic Sk and comparing to a pair of thresholds a < b.
The SPRT statistic Sk is defined by the cumulative sum of the

log likelihood ratio

Sk = Sk−1 + log

(

f1(xk)

f0(xk)

)

. (1)

The thresholds a, b are designed based on Wald’s approxima-

tion as functions of α, β, the desired Type I and Type II prob-

abilities (see [12] for full details). As long as a < Sk < b,
no decision is made and the procedure continues. SPRT ter-

minates the first time Sk <= a (whereupon it decides H0) or

the first time b <= Sk (decide H1). Let τ be the time/index

when the SPRT terminates and make its decision, that is,

τ = min{k ∈ N : Sk ≤ a or Sk ≥ b}. (2)

When the observations are i.i.d. and the class-conditional

probability density functions are known, SPRT is provably

optimal in the sense that no other sequential decision rule that

similarly constrains the Type I and Type II errors can do so

using fewer measurements.

3.2. Using SPRT Within Conformal Predictors

We propose a CP nonconformity measure based on the se-

quence of cumulative log likelihood ratios up to the stopping

time τ . That is, given an object x ∈ X , a nonconformity mea-

sure is defined as a function of [S1, . . . , Sτ ]
T . There are two

immediate consequences of this approach:

• For a track object with length less than the stopping

time τ , the nonconformity measure is not defined. In

this case, we will simply not include the track object in

the CP. The interpretation is that the track is too short

to provide sufficient information for the CP to maintain

its validity while achieving high efficiency.

• For the (sub-)sequence of track objects that resulted in

a well-defined nonconformity measure, the exchange-

ability condition required for the validity of CP is satis-

fied since [S1, . . . , Sτ ]
T ’s are i.i.d. across these tracks.
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Fig. 1: Example distributions of Sτ (x) by class label. The

CP accepts hypothesis y = 1 when Sτ (x) ≥ b′ and hypoth-

esis y = 0 when Sτ (x) ≤ a′. Panel (a) depicts the ideal (no

outlier) case where Pfa < ǫ and (1 − Pd) < ǫ while panel

(b) depicts a case when (1 − Pd) > ǫ. Also shown are the

CP decision regions for accepting only the clutter hypothe-

sis (green), only the target hypothesis (blue) both hypotheses

(red) and neither (gray).

Throughout the rest of this paper we assume that a noncon-

formity measure is always defined for the sequence of track

objects presented to a CP with the understanding that tracks

shorter than the stopping time of the SPRT have been ex-

cluded and are associated with multi-label predictions.

Given a finite sequence of track objects and their class

labels {(x1, y1), (x2, y2), . . . , (xn−1, yn−1)}, we consider a

class-dependent nonconformity score defined by

αi = −(2 · yi − 1) · Sτ (xi), (3)

where Sτ (xi) denotes the cumulative log likelihood ratio of

the track object xi at the stopping time of the SPRT. The class-

conditional Mondrian CP framework [3, 13] includes hypoth-

esis y in the prediction for track xn when

pyn ,
|{i = 1, . . . , n− 1: yi = y & αi ≥ αn}|

|{i = 1, . . . , n− 1: yi = y}|
> ǫ, (4)

i.e., the associated p-value pyn is larger than ǫ, the desired

CP error rate for class y. Since the stochastic process

Sτ (x1), Sτ (x2), . . . is i.i.d. (and therefore exchangeable),

a CP defined using (4) is valid. Note that this validity result

is independent of whether SPRT is able to achieve the desired

Type I and Type II error rates.
To analyze the efficiency of the Mondrian CP defined in

(4), it is convenient to define two scalar thresholds a′ and b′

such that the CP will include y = 0 in the prediction if and
only if Sτ (xi) ≤ a′, and y = 1 in the prediction if and only
if Sτ (xi) ≥ b′. Thus, a′, b′ play a role in the CP analogous to
that of a, b in SPRT. Specifically,

b′ , inf{|{i = 1, . . . , n− 1: yi = 1 & Sτ (xi) ≤ S}| > ǫn1}, (5)

a′ , sup{|{i = 1, . . . , n− 1: yi = 0 & Sτ (xi) ≥ S}| > ǫn0}, (6)

where n1 and n0 denote the numbers of examples labeled

y = 1 and y = 0 made available to the CP via feedback. Note

that b′ = Sτ (xi) and a′ = Sτ (xj) for some i and j, and their

values will change over time as feedback is accumulated. We

first prove a simple lemma that relates a′ and b′ to the SPRT

thresholds a and b:

Lemma. Choose α and β for the SPRT such that

max

{

β

1− α
,

α

1− β

}

< ǫ. (7)

Then a′ and b′ defined by (5) and (6) satisfy a′ ≤ a and b′ ≥ b
for large n, where a and b are the thresholds for the SPRT

designed according to the desired α and β.

Proof. By class-dependent validity of the CP, for large n

P{Sτ (xn) < b′ | yn = 1} ≈ ǫ, (8)

P{Sτ (xn) > a′ | yn = 0} ≈ ǫ. (9)

Furthermore, by SPRT theory

P{Sτ (xn) ≤ a | yn = 1} = 1− Pd ≤ β/(1− α), (10)

P{Sτ (xn) ≥ b | yn = 0} = Pfa ≤ α/(1− β). (11)

Together equations (7), (10) and (8) give that

P{Sτ (xn) ≤ a | yn = 1} < P{Sτ (xn) < b′ | yn = 1}

which in turn implies a < b′. By construction, b′ = Sτ (xi)
for some i; since no Sτ reside within the SPRT “gap” (a, b),
it must be that b′ is either ≥ b or ≤ a. Since a < b (by the

definition of the SPRT) and a < b′ (above), it must be that

b ≤ b′. Similar reasoning shows that a′ ≤ a.

Figure 1 illustrates the basic intuition behind the proof by

depicting the distribution of SPRT scores for tracks of each

class in an ideal (figure 1a) and a non-ideal (figure 1b) case.

In the ideal case, since a < b the Lemma implies that, for any

choice of parameters satisfying (7), the CP thresholds satisfy

a′ < b′. This means the regions for accepting the hypotheses

y = 1 and y = 0 are disjoint and the SPRT-based CP will

never generate multi-label predictions.

When outlier tracks arrive, the SPRT may not achieve the

desired Type I or Type II error rates due to possible mismatch

between the actual measurement-level likelihood functions f̂l
and the estimated likelihood functions (based on fl) used in

the SPRT. In this case, equations (10), (11) no longer hold and

the proportion of SPRT scores on the “wrong” side of either

threshold may exceed ǫ (i.e., Pfa > ǫ or (1 − Pd) > ǫ).
In this case, it is possible that b′ ≤ a′, introducing a region

of nonconformity scores for which neither hypothesis will be

rejected (figure 1b, red region). Note that this mismatch may

be difficult to address by online estimation of the likelihood

functions since outlier tracks occur infrequently.
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π SPRT Type I SPRT Type II CP Err. (y = 1) CP Err. (y = 0) CP Mult. Pred. (y = 1) CP Mult. Pred. (y = 0) Total Mult. Pred.

CP Using Sτ

.05 3.26 % (.39) .07 % (.06) 5.03% (.1) 4.97 % (.1) 0 0 0

.15 9.27 % (.54) .06 & (.05) 5.04 % (.1) 4.98 % (.1) 42.40 % (5.23) 3.70 % (.5) 23.09 % (2.84)

.20 12.44 % (.99) .07 % (.05) 5.03 % (.1) 4.97 % (.1) 58.35 % (5.26) 6.78 % (.1) 32.60 % (2.89)

CP Using S as defined in (12)

.05 3.26 % (.39) .07 % (.07) 5.03 % (.1) 4.96 % (.1) 0 0 0

.15 9.27 % (.54) .06 % (.05) 5.04 % (.1) 4.97 % (.1) 4.43 % (5.79) .36 % (.4) 2.4 % (3.14)

.20 12.44 % (.99) .07 % (.05) 5.03 % (.1) 4.96 % (.1) 20.4 % (8.64) 2.1 % (.5) 11.3 % (4.59)

Table 1: Results for experiments using two different CP statistics.

3.3. Extending to Address Outlier Tracks

Outlier tracks could negatively impact the efficiency of the CP

with our particular choice of nonconformity measure since

the values of Sτ (xi) tend to cluster right outside the SPRT

thresholds. To address this potential lack of robustness, we

propose an extension using statistics based on the cumulative

log-likelihood ratio just beyond the stopping time τ . Specif-

ically, we use the following statistic to replace Sτ (xi) in the

definition of nonconformity measure:

S(xi) =

{

Sτ+d(xi) + c if Sτ (xi) ≥ b,

Sτ+d(xi)− c if Sτ (xi) ≤ a,
(12)

where d ∈ N and c > 0 are chosen such that S(xi) is

outside the SPRT gap. Extending the period of observa-

tion by d will “spread out” the cumulative log-likelihood

ratio values and help reduce the impact of outlier tracks

upon CP efficiency. Since d is fixed, the stochastic process

Sτ+d(x1), Sτ+d(x2), . . . is also i.i.d., and the resulting CP

remains valid. Note that in the idealized case, this modified

nonconformity measure will achieve the same performance

as the SPRT and exhibits the same maximal efficiency as the

original approach discussed in section 3.2.

4. EXPERIMENTAL RESULTS

We now consider empirical results using the Acoustic-seismic

Classification Identification Data Set (ACIDS), created by the

US Army Research Laboratory for developing signal classifi-

cation algorithms. ACIDS contains acoustic and seismic mea-

surements obtained from nine different vehicle types under

different environmental conditions. Tracks consist of a single

vehicle making a single pass of the sensor system at varying

speeds and closest points of approach [14].

The ACIDS raw acoustic measurements were first trans-

formed into a spectrogram by means of a short-time Fourier

transform and the resulting scans (snapshots of the spectrum

in time) were passed through a spectral normalization filter to

remove the broadband energy trend, focusing the feature ex-

traction on the narrowband characteristics of the signature.

The resulting spectrum was then normalized. Scans along

each track were reduced to a single dimension by means of

a principal component analysis followed by applying a non-

linear support vector machine (SVM). The SVM scores (one

per scan) comprise the track.

Table 1 presents results for an experiment where vehi-

cle type 1 represents the target class, type 6 the clutter class

and 4 the clutter outlier class. To ensure i.i.d. measurements

within tracks and to increase the number of test tracks, 5000

resampled tracks (split 50/50 between target and clutter) were

each generated by uniformly sampling 30 measurements from

the test data pool. In practice, probability of detection is

a function of signal to noise ratio (SNR) which usually ex-

hibits dependencies along tracks [15, 16]; the within-track

i.i.d. assumption made here is an idealization that roughly

corresponds to a far-field assumption in which SNR is more

or less consistent. These results shown are for ǫ = .05, SPRT

parameters α = β = .03 and various values of π, the negative

class outlier probability. Values reported are averages over

10 experiments (standard deviations in parentheses). For this

choice of α, β, SPRT makes decisions very quickly; SPRT

made decisions for all tracks in the experiment.

For π = .05 the CP does not generate multiple predic-

tions. Columns 4 and 5 show that the CP remains valid with

respect to both classes even when outlier tracks preclude

SPRT from achieving the desired Type I error rate. The price

paid is a decrease in efficiency (columns 6-8). In this case,

using S(xi) in (12) as the CP statistic leads to a substantial

reduction in the multiple prediction rate compared to Sτ (xi).
This is consistent with the discussion in section 3.3 suggest-

ing cumulative log likelihood ratio values clustering near the

decision threshold makes for a less desirable CP statistic.

5. SUMMARY AND FUTURE WORK

This paper presents a novel combination of techniques from

sequential hypothesis testing and conformal prediction to pro-

vide robustness to occasional track-level outliers in an on-

line classification setting. We showed that this approach re-

tains the ideal performance of SPRT when outliers are absent

while providing valid predictions when track-level outliers are

present. Future work includes considering adaptations that

admit non-i.i.d. observations along each track and additional

ways to improve CP efficiency as the proportion of outlier

tracks increases (e.g. alternative nonconformity measures or

distance metrics [17]).
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