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ABSTRACT

The speech presence probability (SPP) plays an important role in

many noise reduction and noise estimation methods. The SPP

is commonly computed per time and frequency in the short time

Fourier transform (STFT) domain based on the a priori speech

absence probability and the a priori and a posteriori signal-to-

noise ratios. Due to the STFT as well as the nature of the speech

signal, there exists a correlation between subsequent time frames

and neighboring frequency bands. In this work, we explicitly take

these inter-frame and inter-band correlations into account when

computing the SPP. The presented results demonstrate that we can

increase the detection accuracy of the SPP estimator by taking a few

neighboring time and frequency bins into account.

Index Terms— speech presence probability, inter-frame corre-

lations, inter-band correlations.

1. INTRODUCTION

For many noise reduction and noise estimation methods, an estima-

tor for the speech presence probability (SPP) in each time-frequency

(TF) unit is of great interest. Clean-speech estimators, for exam-

ple, are often derived under the assumption that speech is actually

present. As this assumption is true neither during speech pauses nor

between spectral bins of the harmonics of a voiced sound, the SPP

should be taken into account [1–4]. Available noise power spectral

density (PSD) estimators also make use of the SPP to decide when

to update the noise PSD [5–7].

The SPP is commonly computed per TF unit in the short time

Fourier transform (STFT) domain based on the a priori speech ab-

sence probability and the a priori and a posteriori signal-to-noise

ratios. Most a posteriori speech presence probability (SPP) estima-

tors are derived under the assumption that the spectral coefficients of

the speech and noise can be modeled using complex Gaussian ran-

dom variables. Moreover, it is commonly assumed that the time and

frequency units are mutually uncorrelated across time and frequency.

The spectral coefficients obtained after computing the STFT are both

correlated across time and frequency. In addition, subsequent time

frames are correlated due to the short-term stationarity of the speech

signal, and neighboring frequency bins are correlated due to the har-

monic structure of voiced speech segments [8].

In recent works [8–10], the inter-band correlations were explic-

itly used to derive novel noise reduction filters. In other works
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(c.f. [9, 11, 12]), the inter-frame correlations have been used to de-

rive novel single and multichannel noise reduction filters. In [12],

a single-channel noise reduction filter that uses the inter-frame cor-

relations was derived that is able to reduce noise without distorting

the desired speech. In [13], a fullband voice activity detector was

proposed that takes the inter-band correlations into account. In [14],

Gerkmann et al. noted that SPP estimators that rely on an obser-

vation of the noisy periodogram suffer from random fluctuations.

Among other modifications, they proposed to compute an average

of the a posteriori signal-to-noise ratio (SNR) under the assumption

that the speech energy is distributed homogeneously over a small

spectrogram region. Although the correlation that results from the

spectral analysis is partly taken into account, the correlation due to

the speech or noise signal is not taken into account.

In this paper, our goal is to estimate the narrowband SPP us-

ing a single noisy speech signal. In particular, we explicitly exploit

the inter-frame and inter-band correlations when estimating the SPP

in each TF unit. The obtained SPP estimator is similar to the one

presented in [15] that was developed to exploit inter-channel corre-

lations. In [15] a simplified SPP estimator was obtained under the

implicit assumption that the correlation matrix of the desired signal

is of rank one. Here, we investigate the performance of the SPP

estimator with full rank and rank one assumptions. The presented

results demonstrate that we can increase the detection accuracy of

the SPP estimator by taking a few neighboring time and frequency

bins into account.

The paper is organized as follows: in Section 2, the problem is

formulated. In Section 3, the SPP estimator is derived that is able

to take both inter-frame and inter-band correlations into account. In

Section 4, the experimental results are provided and discussed. Fi-

nally, Section 5 concludes the paper.

2. PROBLEM FORMULATION

We consider the well-accepted signal model in which a microphone

captures a desired signal that is corrupted by additive noise. In

the short-time Fourier transform (STFT) domain we can express

the spectral coefficients of the received signal at time-frame m and

discrete-frequency k as

Y (k,m) = X(k,m) + V (k,m), (1)

where X(k,m) is the desired signal and V (k,m) is the addi-

tive noise. We assume that the spectral coefficients X(k,m) and

V (k,m) are uncorrelated and zero-mean complex Gaussian random

variables.

Because of the properties of the STFT and the nature of the

speech signal, it is likely that the TF unit of interest is correlated with
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Fig. 1. Illustration of the time and frequency units that are taken

into account to construct the input signal vector y(k,m). The black

square indicates the current unit (k,m). The gray area around it

indicates the additional TF units used.

neighboring TF units. For computing the SPP at TF unit (k,m), we

take only a selected number of spectral coefficients into account as

shown in Fig. 1.

We define an input signal vector, y(k,m), that contains all spec-

tral coefficients that are taken into account as

y(k,m) =
[
Y (k −K

−
,m) · · · Y (k,m) · · · Y (k +K

+
,m)

Y (k −K
−
,m− 1) · · · Y (k,m− 1) · · · Y (k +K

+
,m− 1)

· · · Y (k −K
−
,m− L+ 1) · · · Y (k,m− L+ 1)

· · · Y (k +K
+
,m− L+ 1)

]T
, (2)

where L is the number of consecutive time frames used for each

frequency bin1, and K− and K+ are, respectively, the numbers of

consecutive frequency bands before and after the kth bin used for

each TF unit. In the following we assume that K = K− = K+ The

input signal vector y(k,m) has a length M = L (2K + 1).

The vector y(k,m) can be expressed as

y(k,m) = x(k,m) + v(k,m) (3)

where

x(k,m) = [X(k −K,m)

· · · X(k,m) · · · X(k +K,m− L+ 1)]T (4)

and

v(k,m) = [V (k −K,m)

· · · V (k,m) · · · V (k +K,m− L+ 1)]T . (5)

The SPP is defined as the a posteriori probability that speech is

present given the noisy observation and the statistical properties of

the speech and the noise. Now, our objective is to estimate the a

posteriori SPP at time frame m and frequency bin k, given the noisy

input signal vector y(k,m).

1We can use different numbers of consecutive time-frames for different

frequencies but to simplify the presentation, we use the same number L.

3. SPEECH PRESENCE PROBABILITY ESTIMATION

In this section, we describe how the a posteriori SPP can be com-

puted. We first define the following hypotheses that indicate speech

presence and absence:

H0 : y(k,m) = v(k,m), indicating speech absence

H1 : y(k,m) = x(k,m) + v(k,m), indicating speech presence.

Assuming that the speech and noise components are complex

Gaussian random vectors with uncorrelated identically distributed

real and imaginary parts, the likelihoods p[y |H0] and p[y |H1] can

be written in closed form according to [15] as2

p[y |H0] =
1

πM det[Φv]
e
−yHΦ−1

v
y
, (7)

p[y |H1] =
1

πM det[Φx +Φv]
e
−yH(Φv+Φx)−1y

, (8)

where det[·] denotes the determinant of a matrix and Φv =
E{vvH} and Φx = E{xxH} denote the correlation matrices of

the noise and speech, respectively.

The generalized likelihood ratio (GLR) is defined as

Λ =
q

1− q

p[y | H1]

p[y | H0]
, (9)

where q = p[H1] denotes the a priori SPP.

The SPP can be obtained from the Bayes rule as follows

p[H1 |y] =
Λ

1 + Λ
(10a)

=

{
1 +

1

Λ

}−1

. (10b)

Without making any further assumptions, GLR in (9) can be

rewritten as [15]

Λ =
q

1− q

det[Φv]

det[Φx +Φv]
e
yH[Φ−1

v
−(Φv+Φx)−1]y

. (11)

Although the SPP estimator is similar to [15], it should be no-

ticed that we use the inter-frame and inter-band correlations instead

of inter-channel correlations.

In [15], it is implicitly assumed that the speech correlation ma-

trix Φx is of rank one. Using the matrix inversion lemma, the GLR

can then be written as

Λ =
q

1− q

1

1 + tr{Φ−1
v Φx}

exp

{
yHΦ−1

v ΦxΦ
−1
v y

1 + tr{Φ−1
v Φx}

}
, (12)

where tr{·} denotes the trace of a matrix. Introducing the quantities

ξ = tr{Φ−1
v Φx}, (13)

β = y
H
Φ

−1
v ΦxΦ

−1
v y, (14)

the SPP can be expressed as

p[H1 |y] =

{
1 +

1− q

q
[1 + ξ] exp

[
−

β

1 + ξ

]}−1

. (15)

For L = 1 and K = 0, the SPP estimator reduces to the tradi-

tional single-channel SPP estimator [2].

2The time and frequency indices are omitted for brevity.
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Fig. 2. Spectrogram of the clean female speech sample: “She had

your dark suit in greasy wash water all year”.

4. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the narrowband SPP

estimator for four different scenarios: In Scenario 1, we do not use

any other TF units (i.e., L = 1 and K = 0). In Scenario 2, we use

only inter-frame correlations (i.e., L > 1 and K = 0). In Scenario 3,

we only use inter-band correlations (i.e., L = 1 and K > 0). In

Scenario 4, we use both the inter-band and inter-frame correlations

(i.e., L > 1 and K > 0). Scenarios 2-4 have, to the best of our

knowledge, not been investigated before.

4.1. Experimental Setup

In the experiments, clean speech samples were used from the TIMIT

database [16]. The sampling frequency was 16 kHz. The additive

noise consisted of white Gaussian noise and different input SNRs

were obtained by changing the level of the noise. The STFT is com-

puted using a 32 ms hamming window with 50% overlap. The cor-

relation matrix of the noisy signal, y(k,m), is computed recursively

using

Φ̂y(k,m) = αy Φ̂y(k,m−1)+(1−αy)y(k,m)yH(k,m), (16)

where αy denotes the forgetting factor that was set to 0.85. Note

that even though the noise is white, the correlation matrix is not an

identity matrix due to overlapping analysis windows of the STFT.

Since our objective is to analyze the performance of the SPP

estimator, the noise correlation matrix is computed from the first

second during which the speech was absent such that Φ̂v(k,m) =

Φ̂y(k,m). The correlation matrix of the clean speech was computed

using Φ̂x(k,m) = P{Φ̂y(k,m) − Φ̂v(k,m)}, where P{·} is an

operation that sets all negative eigenvalues to zero to ensure that the

resulting matrix is positive definite. The a priori SPP was set to

q(k,m) = 0.4 as used in [15].

4.2. Examination of Four Scenarios

Here we examine the estimated SPP obtained for the four different

scenarios using a female speech sample shown in Fig. 2. In Fig. 3,

the estimated SPP is shown for different values of L and K. The

result shown in Fig. 3(a), is obtained using the traditional SPP esti-
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(c) L = 3 and K = 0
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(f) L = 2 and K = 1

Fig. 3. Time and frequency dependent SPP, input SNR=15 dB: (a) Scenario 1: L = 1 and K = 0, (b) Scenario 2: L = 2 and K = 0, (c)

Scenario 2: L = 3 and K = 0, (d) Scenario 3: L = 1 and K = 1, (e) Scenario 3: L = 1 and K = 2, (f) Scenario 4: L = 2 and K = 1.
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(a) Input SNR = 5 dB
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L=1 and K=0

L=2 and K=1 (rank one)

L=2 and K=1 (full rank)

SPP according to [14]

(b) Input SNR = 15 dB

Fig. 4. ROC curves for two different input SNRs.

mator that does not take the inter-frame and inter-band correlations

into account. Comparing the estimated SPP in Fig. 3(a) to Fig. 2, we

can observe that the SPP is not always detected correctly. By using

multiple time frames, we can achieve better detection at frequen-

cies above 3 kHz (see Fig. 3(b) for L = 2 and Fig. 3(c) for L = 3
and K = 0). Even better results are obtained by using L = 1 and

multiple frequency bins as shown in Fig. 3(d-e). For L = 1 and

K = 2, we notice that the fine structure of the speech is no longer

preserved while the unvoiced speech segments are better preserved.

A good compromise is obtained using L = 2 and K = 1 as shown

in Fig. 3(f).

4.3. Numerical Results

The performance of the proposed SPP estimator was evaluated by

examining the speech detection and false-alarm probabilities (Pd and

Pfa) for Scenarios 1 and 4. For this experiment, one male and one

female speech sample were concatenated. We define Pd as the ratio

of correct speech decisions to the speech TF units, and Pfa as that

of false speech decisions to the non-speech TF units. The speech or

non-speech TF units were obtained by comparing whether the power

of a TF unit of the clean speech was larger or smaller than a prede-

fined level that was set to -60 dB below the maximum instantaneous

power across all TF units. The speech detection, Pd, was computed

as the ratio of the total number of speech TF units with a SPP larger

or equal than a given threshold (between zero and one), to the total

number of speech TF units. The false-alarm probability, Pfa, was

computed similar to Pd using the non-speech TF units instead of the

speech TF units. For any given input SNR and threshold between

Input SNR

5 dB 10 dB 15 dB

L = 1 andK = 0 0.329 0.397 0.512

L = 2 andK = 1 (rank one) 0.540 0.581 0.614

L = 2 andK = 1 (full rank) 0.572 0.615 0.658

SPP according to [14] 0.434 0.465 0.467

Table 1. Speech detection probability for different input SNRs for a

false-alarm probability of 0.05.

zero and 1, we computed both Pd and Pfa. The receiver operating

characteristic (ROC) curve that shows the tradeoff between Pd and

Pfa is then obtained by plotting both values [13].

Here we tested four SPP estimators: i) computed using (15) (i.e.,

with L = 1 and K = 0), ii) computed using (10) and (12) with

L = 2 and K = 1 (i.e., with the rank one assumption), iii) com-

puted using (10) and (11) with L = 2 and K = 1 (i.e., with full

rank assumption), and iv) the SPP estimator proposed in [14] using

the reported parameters. The ROC curves of the four SPP estimators

for an input SNR of 5 and 15 dB are shown in Figs 4(a) and 4(b),

respectively. Thresholds were set from a value close to one, to zero

with decreasing steps of 0.001. In Figs. 4(a) and 4(b), it can be seen

that we can achieve a higher speech detection probability for a given

false-alarm probability using both inter-frame and inter-band corre-

lations. Furthermore, the SPP estimator that uses both inter-frame

and inter-band correlations with full rank assumption outperforms

the estimator with the rank one assumption as well as the estimator

proposed in [14].

Finally, we show the speech detection probability, Pd, as a func-

tion of the input SNRs for a given false-alarm probability, Pfa, was

set to 0.05. The results for an input SNR of 5, 10, and 15 dB are

depicted in Table. 1. Exploiting the inter-frame and inter-band cor-

relations (as done in Scenario 4) results in a higher speech detection

probability compared to the traditional SPP estimator (as done in

Scenario 1) and the estimator proposed in [14] for all SNRs. We can

notice that the difference between the detection probabilities of the

estimator with rank one and with full rank assumptions (Scenario 4)

monotonically increases with the input SNRs.

5. CONCLUSIONS

We proposed a general single-channel SPP estimator that can ex-

plicitly exploit inter-frame and inter-band correlations. As a spe-

cial case, we obtained the traditional SPP estimator that is computed

based on only the current noisy observation and an estimate of the

clean speech and noise statistics. For the evaluated signals, it was

shown that the detection accuracy of the SPP estimator can be in-

creased by using inter-frame and/or inter-band correlations and as

such consistently outperforms the traditional SPP estimator and the

estimator proposed in [14]. Especially at low input SNRs, which is

often the case at high frequencies, the additional information im-

proves the detection accuracy. It is expected that the use of the

proposed narrowband SPP estimator can further improve the per-

formance of single-channel noise reduction filters as well single-

channel noise PSD estimators as their performance depends to a

large extent on the accuracy of the SPP estimator.
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