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ABSTRACT

Matching Pursuit (MP) is a greedy algorithm that iteratively builds a
sparse signal representation. This work presents an analysis of MP
in the context of audio denoising. By interpreting the algorithm as
a simple shrinkage approach, we identify the factors critical to its
success, and propose several approaches to improve its performance
and robustness. We present experimental results on a wide range of
audio signals, and show that the method is able to yield results thats
are competitive with other audio denosing approaches. Notably, the
proposed approach retains a small percentage of the transform signal
coefficients in building a denoised representation, i.e., it produces
very sparse denoised results.

Index Terms— Matching Pursuit, Greedy Search, Simple
Shrinkage, Sparse Representation, Audio Denoising

1. INTRODUCTION

Time-Frequency audio denoising approaches remove unwanted
noise from audio signals by attenuating it in the frequency do-
main. The idea is that for audio like speech and music, most of
the meaningful parts of the sound are concentrated in a relatively
small number of frequency components. As a result, one can at-
tenuate or shrink the noise in the frequency domain, while leaving
the meaningful parts of the sound largely unaffected [1]. Modern
signal denoising approaches are often equipped with an assumption
of sparsity [2, 3, 4, 5], which refers to the circumstance that many
natural signals can be expanded (using a suitable dictionary Φ) with
only few non-zero coefficients. Matching Pursuit (MP) is one such
algorithm, that iteratively selects time-frequency atoms from a dic-
tionary Φ, to build a sparse signal representation [6]. Despite its
ability to yield sparse representations, MP has largely been unex-
plored in the context of audio/signal denoising. One of the reasons
for this, perhaps, is that sparsity is not enforced in MP, but rather a
consequence of a greedy search – which iteratively selects the most
energetic dictionary atom, i.e., the atom most correlated with the
residual signal. This paper presents an analysis of MP denoising in
the context of audio noise reduction, as well as several strategies to
improve its performance and robustness. In doing so we introduce
a new audio denoising approach called Greedy Time-Frequency
Shrinkage (GTFS), that we will show is able to produce competitive
denoising results in terms of standard performance metrics, SNR
and PEAQ1 [7]. While many forms of noise exist, we focus on
the removal of uncorrelated Gaussian white noise from music and
speech signals.

1SNR - Signal to Noise Ratio, PEAQ - Perceptual Evaluation of Audio
Quality

2. GREEDY TIME-FREQUENCY SHRINKAGE

The denoising principle in MP is based on the fact that the algorithm
selects time-frequency atoms that are highly correlated with the sig-
nal in order to build a signal representation. Thus as the noise we
wish to remove is uncorrelated, MP will first select the correlated
deterministic atoms before it selects the noisy ones. The success of
the approach is based on MP being able to identify when a noisy
atom is selected, and stopping the decomposition process. A natu-
ral first approach to achieve this is by applying a threshold on the
correlation value between the dictionary atoms and the residual MP
signal. When MP is used to denoise signals in this way, it can be in-
terpreted as a simple shrinkage approach. We hence dub this denois-
ing method – Greedy Time-Frequency Shrinkage (GTFS). Wavelet
shrinkage, or just, Shrinkage, is a classical denoising method in sig-
nal processing. It is based on the idea that an oracle furnishes infor-
mation about how best to adapt a spatially variable estimator, to an
unknown function [8, 9, 10].

2.1. Signal Model

We consider an observation signal f ∈ RN that is corrupted by Gaus-
sian white noise e ∼ N (0, σ2) :

y[n] = f [n] + e[n] n = 0, ....., N − 1

Where it is assumed that f = Φc, with sparse synthesis coefficients
c and redundant time-frequency dictionary Φ.

2.2. GTFS Algorithm

The MP residual signal is initialized as r0 = y. At each iteration
MP selects the time-frequency atom with the highest correlation to
the residual signal and assigns it a weight, αi = 〈gm(i), ri〉, where
gm(i) is the selected dictionary atom and ri is the residual signal
at the ith iteration. This coefficient αi is then shrunk or attenuated
based on a hard thresholding rule [8], with threshold λ :

αH(αi, λ) = αi {|αi| > λ} (1)

If the threshold condition is met, the weighted atom is subtracted
from the residual signal and the process is repeated until a stopping
condition is met. After N iterations the signal is recovered as f̂ =∑N−1

i=0 αigm(i).

Ideally, the algorithm should stop when all the deterministic audio
components have been recovered. However this is not always the
case, as GTFS denoising is sensitive to the shrinkage operator, the
threshold value λ, and the dictionary used for signal analysis.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 2922



2.3. Shrinkage Operator

GTFS or MP denoising based on correlation thresholding, iteratively
applies the hard thresholding rule to each greedily selected atom.
The hard thresholding operator is a discontinuous function, and pro-
duces results with high variance [11]. Moreover, hard thresholding
is a diagonal estimation approach, wherein each time-frequency co-
efficient is processed independently. One of the known drawbacks
of diagonal estimators in audio denoising is that they produce iso-
lated time-frequency artifacts that are perceived as musical noise
[12]. The hard thresholding operator does not actually attenuate or
shrink atomic coefficients, i.e., it is a ‘keep’ or ’kill’ rule, and hence
the success of the approach depends heavily on the threshold value
used.

2.4. Threshold Selection

In order to perform shrinkage on the atomic coefficients of a noisy
signal, an appropriate threshold value is needed. Donoho and John-
stone introduced the Universal, Minimax and SURE thresholds for
thresholding the transform coefficients of a noisy signal [8, 13]. The
table below compares the denoising performance of each of these
thresholds in conjunction with GTFS. The audio used for this experi-
ment was a solo trumpet recording sampled at 44.1 kHz, deteriorated
with 5dB white noise.

Threshold SNR(dB)
Universal 16.16
Minimax 18.61
SURE 17.70

Table 1. Denoising results for different thresholds.

The Universal threshold is considerably larger than the Minimax and
SURE thresholds, and consequently stops the signal decomposition
process the earliest, producing the sparsest result. While it is able to
completely attenuate the noise, the Universal threshold underfits the
data, i.e., it is unable to completely recover the sound. As a result
it yields the lowest output SNR of the three thresholds. That being
said, both the Minimax and SURE thresholds used in conjunction
with GTFS produce high-frequency musical noise artifacts.

2.5. Dictionary Design

Signal transformation in MP is achieved by decomposing a signal
over a redundant dictionary. The main assumption is that the signal
under analysis can be represented by a small number of dictionary
elements, i.e., an assumption of sparsity. In the context of audio de-
noising, in addition to sparsely representing the sound, the dictionary
should not be correlated to the noisy signal content. Thus, GTFS de-
noising is highly dependent on the dictionary, and the diagonal esti-
mation approach often leads to data overfitting and musical noise ar-
tifacts. Numerical experiments have shown that GTFS produces the
best denoising results when a dictionary with relatively long atoms
is used. This is because long (tonal) atoms are well correlated to the
tonal content of a sound. Longer atoms are also less likely to match
noisy signal content than shorter atoms. Another advantage of using
longer atoms is that it implies sparser denoising results. In general,
sparse denoised results imply good results in terms of musical noise
attenuation and output SNR. However in extreme cases, underfitting
leads to results that are too sparse, and generally unacceptable. We
make use of a three scale dictionary of Gabor atoms corresponding

to window lengths of 8192, 4096 and 2048 samples for the majority
of our experiments. It should be noted that while this kind of dictio-
nary worked well for the majority of our experiments, it underfits the
data for sounds with a large amount of transient content, i.e., sharp
attacks, frequency modulation, breath noise etc. For such sounds
we repeatedly perform a decomposition on the residual signal using
single-scale dictionaries with short atoms, corresponding to window
lengths of either 512, 256 or 128 samples.

2.6. Stopping Criteria

A simple criterion for stopping a MP decomposition is based on the
ratio of the energies of the reconstructed and residual signals, known
as the signal-to-residual ratio (SRR). Once the SRR falls beneath a
threshold, typically a very small value, the process is stopped. In
GTFS denoising, this typically occurs when an atom does not meet
the correlation threshold condition.The idea is that the algorithm
should stop once all the meaningful or non-noisy audio content has
been recovered.

3. MODEL ENHANCEMENTS

Having identified the primary factors on which GTFS denoising de-
pends, we present several approaches to improve its performance in
terms of musical noise attenuation, output SNR and algorithmic sta-
bility. The dictionary used for signal transformation plays a central
role in GTFS denoising, and can suffer from problems of both over
and underfitting. The underfitting problem can be largely avoided
by using a very redundant dictionary. This however often leads to
data overfitting and musical noise artifacts. In order to tackle this
problem we consider different rules to attenuate the transform coef-
ficients of the noisy signal, and introduce an iterative thresholding
strategy based on the SURE threshold.

3.1. Attenuation Rule

GTFS makes use of the hard thresholding rule, that does not atten-
uate a coefficient if it satisfies the threshold. Thus if an erroneous
atom gets past the correlation threshold, there is no provision to re-
duce or nullify its influence. In order to tackle this problem, we
consider two alternate attenuation rules.

3.1.1. Soft Thresholding

Along with hard thresholding, Donoho and Johnstone introduced a
soft thresholding operator for the shrinkage of wavelet coefficients
[14]. Unlike hard thresholding, the soft thresholding operator is a
continuous function, and produces results with high bias due to at-
tenuation of large coefficients [11]. The GTFS-ST algorithm main-
tains the same GTFS denoising structure, replacing the hard thresh-
olding step with a soft threshold :

αS(αi, λ) = sgn(αi)(|αi| − λ)+ (2)

Where (.)+ represents max(0, .). The GTFS-ST algorithm was
tested with the same dictionary and trumpet recording as before. We
make use of the SURE and Minimax thresholds, as GTFS using these
thresholds produced musical noise artifacts. GTFS-ST yielded a de-
noised signal with an SNR of 16.81dB and 17.15dB respectively.
The algorithm was able to attenuate musical noise to a much greater
extent than GTFS, with complete removal of musical noise in the
Minimax case. The GTFS-ST was able to greatly attenuate musical
noise with the SURE threshold as well, however a small amount of
audible artifacts remained in the denoised sound.
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3.1.2. Empirical Wiener Attenuation

Like simple shrinkage, Empirical Wiener filtering is a signal denois-
ing approach based on diagonal estimation [15], and has been shown
to produce results that are somewhat in between the hard and soft
thresholding operators [16]. The Empirical Wiener attenuation rule
is given by

αEW (αi, λ) = αi

(
1−

[
λ

|αi|

]2)
+

(3)

We tested the empirical Wiener attenuation rule under the same con-
ditions as the soft thresholding operator. The Wiener rule was able
to greatly attenuate musical noise with both the Minimax and SURE
thresholds. Interestingly, GTFS with the empirical Wiener rule un-
derfit the data when used in conjunction with the Minimax threshold,
achieving a SNR of 14.52dB. With the SURE threshold GTFS-EW
yielded a denoised result with a SNR of 17.26dB.

3.2. Dynamic Thresholding

In the GTFS denoising framework, the wavelet thresholds are static,
i.e., they remain the same throughout the signal denoising process.
This is illustrated by the three straight lines in Fig. 1. While these
thresholds worked quite well with the soft thresholding and empiri-
cal Wiener rules, they yield musical noise artifacts when used in con-
junction with hard thresholding. In this section we develop dynamic
thresholding strategies in which thresholds are iteratively updated
based on the changing residual signal.

3.2.1. GreedySURE

In the GreedySURE approach, for each iteration of the GTFS al-
gorithm, the SURE threshold is calculated based on the transform
coefficients of the residual signal. The dashed line (red) in fig. 1
shows the evolution of the GreedySURE threshold over the course
of a GTFS denoising decomposition.

3.2.2. NaiveSURE

The NaiveSURE approach is similar to GreedySURE, with the dif-
ference that the SURE threshold is computed on the noisy residual
signal itself, and not on its transform coefficients. The green curve
in fig. 1 represents the NaiveSURE threshold, which starts out no-
ticeably larger than all the other thresholds.

3.2.3. BlockSURE

BlockSURE is a variation of GreedySURE that determines thresh-
olds based on local information. Rather than compute the SURE
threshold based on the transform coefficients of the entire residual
signal at each iteration, we construct a time-frequency block around
the selected atom and evaluate the SURE threshold based on that
block. This approach is similar to the adaptive thresholding approach
used in audio block thresholding [17]. Numerical experiments have
shown that best results are achieved with blocks corresponding to 16
units in time and 8 units in frequency. For atoms of length 2048 sam-
ples, this corresponds to 743 ms time blocks, and a frequency range
of 172.26 Hz. The BlockSURE threshold is represented by the black
curve in fig. 1, and overlaps with the GreedySURE curve (red) most
of the time.
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Fig. 1. Evolution of Static and Dynamic Thresholds over the course
of a GTFS denoising process.

Thr Mini Univ Sure gSure nSure bSure
SNR 18.54 16.55 17.79 18.40 18.67 19.21

Table 2. Denoising results for noisy flute recording (5dB noise) with
various thresholds. Mini = Minimax, Uni = Universal, Sure = SURE,
gSure = GreedySURE, nSure = NaiveSURE, bSure = BlockSURE.

3.2.4. Discussion

Both the soft thresholding operator and the empirical Wiener atten-
uation rule are able to attenuate musical noise to a larger extent than
hard thresholding. Apart from affecting the contribution of each
atom, the choice of attenuation rule also affects the GTFS denoising
process in terms of frequency of the atoms selected. Interestingly,
the three attenuation rules select mostly the same set of frequen-
cies – roughly 90%. This implies that a very small fraction of time-
frequency coefficients influence whether the algorithm will overfit
the data or not.

While the soft thresholding and empirical Wiener rules help with
the overfitting problem, both methods occasionally yield relatively
low SNR. In order to improve performance in this regard, we devel-
oped dynamic thresholding approaches. Fig. 1 shows the evolution
of the various dynamic thresholds. Each of them displays a decreas-
ing trend, which helps to avoid the underfitting problem in general.
The dynamic thresholds also perform better than their static coun-
terparts in terms of attenuating musical noise. Table 2 compares
the denoising results for the various static and dynamic thresholding
strategies in terms of SNR. The audio used for this test was a solo
flute recording deteriorated by 5dB noise. Each threshold was tested
in conjunction with the hard thresholding rule, as it displayed the
greatest tendency to overfit data. We confirm that the static Mini-
max and SURE thresholds, as well as the the dynamic GreedySURE
approach all produced musical noise. However the NaiveSURE and
BlockSURE approaches were able to greatly attenuate musical noise
artifacts, while achieving high SNR (i.e. not underfitting the data).

4. EXPERIMENTS AND RESULTS

In the previous section we presented a variety of approaches to im-
prove the performance of MP based audio denoising in terms of
attenuating musical noise, and achieving higher output SNR. The
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SNR Violin Flute Piano M-Voice F-Voice
BT 14.87 20.31 18.60 12.94 16.95
PEW 14.10 18.67 16.54 11.26 15.28
GTFS 14.18 19.21 16.74 12.00 15.60

PEAQ Violin Flute Piano M-Voice F-Voice
BT -3.63 -3.06 -3.04 -2.92 -3.30
PEW -2.83 -2.39 -2.20 -2.39 -2.36
GTFS -3.01 -2.62 -2.42 -2.55 -2.29

Table 3. SNR & PEAQ (5dB noise). BT = Block Thresholding,
PEW = Persistent Empirical Wiener, GTFS = Greedy Time Fre-
quency Shrinkage.

SNR Violin Flute Piano M-Voice F-Voice
BT 12.34 17.09 15.18 10.30 13.74
PEW 10.04 16.20 12.84 08.50 11.89
GTFS 09.73 16.47 13.72 09.26 12.20

PEAQ Violin Flute Piano M-Voice F-Voice
BT -3.40 -3.36 -3.06 -2.86 -3.31
PEW -2.68 -2.64 -1.95 -2.36 -2.42
GTFS -1.78 -2.83 -2.58 -2.00 -2.17

Table 4. SNR & PEAQ (0dB noise). BT = Block Thresholding,
PEW = Persistent Empirical Wiener, GTFS = Greedy Time Fre-
quency Shrinkage.

unpredictable nature of the greedy atomic decomposition process,
makes experimental testing and analysis an important aspect of de-
veloping and improving the approach. In this section we test the
GTFS denoising approach on a wide range of audio signals. Algo-
rithmic performance is measured in terms of output SNR and PEAQ
scores. The PEAQ metric scores the perceptual distortion in the de-
noised audio on a scale ranging from a minimum of -4 (worst case,
i.e. maximum perceptible distortion) up to a maximum of 0 (best
case, i.e. no perceptible distortion at all).

4.1. Comparison with other Algorithms

In this case study we compare the performance of the GTFS de-
noising approach with two other algorithms - audio Block Thresh-
olding (BT) [17] and Persistent Empirical Wiener (PEW) denoising
[18, 19]. We compare the algorithms over a range of audio signals
which include solo recordings of the violin, flute and piano, as well
as male (M-Voice) and female (F-Voice) speech signals. All audio
was sampled at 44.1 kHz. Testing is done at noise levels of 5dB and
0dB respectively.

Algorithm 5dB Noise 0dB Noise
BT 97.62 94.45

PEW 14.33 11.04
GTFS 00.19 00.07

Table 5. Average Number of Transform Coefficients Retained (%).

From Table 3 & 4 we see that GTFS denoising produces competitive
results with both BT and PEW in terms of SNR and PEAQ scores,

at different noise levels. While there is much debate regarding the
merits of different performance metrics, we can confirm that the de-
noised results produced by all three algorithms are of comparable
quality 2. This assessment is based on informal listening tests. No-
tably (cf. Table 5), GTFS retains a significantly smaller number of
the transform signal coefficients than both BT and PEW, retaining
between 0.07-0.19% of the transform coefficients. In our testing the
PEW denoising approach retained 11.04-14.33% of the coefficients
on average. BT is not a sparse denoising approach and retains most
of the transform coefficients.

4.2. Computational Complexity

The GTFS algorithms that make use of a static thresholding strategy.
take approximately the same amount of time to perform a (denoised)
signal decomposition than a standard MP would do. The only ad-
ditional step involves the calculation of the threshold value. The
dynamic thresholding approaches on the other hand, take slightly
longer to process, as a threshold value has to be calculated at each
iteration. We note in our experiments, however, that GTFS generally
produces a much sparser signal representation, which reduced num-
ber of iterations compensates for the per-iteration threshold com-
putation. A comparison of the computation times for the different
GTFS approaches is provided on the companion website.

5. CONCLUSION

This work presents an analysis of Matching Pursuit based signal de-
noising by casting the problem as a Greedy Time-Frequency Shrink-
age. We identified dictionary design and threshold selection as key
components in the success of the approach, and proposed using al-
ternate attenuation rules and dynamic thresholding strategies in or-
der to enhance its output SNR, attenuation of musical noise and al-
gorithmic stability. GTFS denoising was shown yield results that
are comparable to other state-of-the-art audio denoising algorithms
in terms of PEAQ and SNR scores. One of the advantages of the
GTFS framework is that it is easily extendible. Future work will at-
tempt to extend GTFS denoising framework to non-stationary noise,
incorporate non-diagonal estimators and different attenuation rules
[20, 21, 22, 23, 4].
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