
LOCALIZATION OF IMPULSIVE DISTURBANCES IN ARCHIVE AUDIO SIGNALS USING
PREDICTIVE MATCHED FILTERING
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maciekn@eti.pg.gda.pl, marcin.ciolek@pg.gda.pl

ABSTRACT
The problem of elimination of impulsive disturbances from archive
audio signals is considered and its new solution, called predictive
matched filtering, is proposed. The new approach is based on the ob-
servation that a large percentage of noise pulses corrupting archive
audio recordings have highly repetitive shapes that match several
typical “patterns”, called click templates. To localize noise pulses,
click templates can be correlated with the sequence of multi-step-
ahead prediction errors yielded by the model-based signal predictor.
It is shown that predictive matched filtering is an efficient and com-
putationally affordable disturbance localization technique – when
combined with the classical detection method based on autoregres-
sive modeling, it can significantly improve restoration results.

Index Terms— Restoration of audio signals, outlier detection
and elimination, adaptive signal processing.

1. INTRODUCTION

Archived audio recordings are often degraded by impulsive distur-
bances [1], [2]. Clicks, pops, ticks, crackles and record scratches
are caused by aging and/or mishandling of the surface of gramo-
phone records (shellac or vinyl), specs of dust and dirt, faults in the
record stamping process (e.g. gas bubbles), and slight imperfections
in the record playing surface due to the use of coarse grain filters
in the record composition. In the case of magnetic tape recordings,
impulsive disturbances can be usually attributed to transmission or
equipment artifacts (e.g. electric or magnetic pulses). Elimination of
noise pulses from archive audio documents is an important element
of saving our cultural heritage.

For the sake of simplicity, in this paper we will deal only with
the problem of elimination of impulsive disturbances, i.e., we will
assume that the sampled audio signal y(t) has the form

y(t) = s(t) + δ(t) (1)

where t = . . . ,−1, 0, 1, . . . denotes normalized (dimensionless)
discrete time, s(t) denotes the undistorted (clean) audio signal, and
δ(t) is the sequence of noise pulses.

Let d(t) be the pulse location function

d(t) =

{
1 if δ(t) 6= 0
0 if δ(t) = 0

.

The problem of elimination of impulsive disturbances is usually
solved in two steps. First, noise pulses are localized. The resulting
estimated pulse location function has the form
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d̂(t) =

{
1 if the sample is classified

as an outlier
0 otherwise

.

Then, at the second stage of processing, all samples regarded as out-
liers Yδ = {y(t) : d̂(t) = 1} are interpolated based on the approved
samples Ys = {y(t) : d̂(t) = 0}.

The majority of known approaches to elimination of impulsive
disturbances from archive audio signals are based on adaptive pre-
diction – the autoregressive (AR) or autoregressive moving average
(ARMA) model of the analyzed signal is continuously updated and
used to predict consecutive signal samples [3]–[9]. Whenever the
absolute values of the multi-step-ahead prediction errors become too
large, namely when they exceed a prescribed multiple of their es-
timated standard deviation, a “detection alarm” is raised, and the
predicted samples are scheduled for reconstruction. Recently some
nonlinear restoration techniques were also proposed [10].

The classical approach, mentioned above, is a general purpose
outlier elimination scheme which does not rely on any information
about the size and shape of noise pulses – even if such a prior knowl-
edge is available. To the best of our knowledge, apart from [4],
which focuses on very long disturbances such as record scratches,
the only approach proposed so far, which incorporates prior knowl-
edge about noise pulses into pulse detection/elimination procedure,
is that described in the recent paper of Ávila and Biscainho [11]. The
Bayesian pattern matching procedure proposed there is based on the
idea of Gibbs sampling. It results in a numerical procedure which
– unlike the procedure described below – is computationally very
demanding.

2. CREATING CLICK TEMPLATES

While some noise pulses encountered in archive audio recordings
have unique (and sometimes rather complicated) shapes, the ma-
jority of them form repeatable patterns which can be grouped in a
relatively small number of classes represented by click templates.
Typical shapes and duration of noise pulses may strongly depend on
the recording medium (shellac, vinyl, magnetic tape), the way it was
handled in the past (storage conditions, degree of wear), played back
(pre-amplifier mode, turntable speed, type of stylus or tape deck),
and digitized (sampling rate). Hence, the important feature of the
proposed approach is its source adaptivity.

Exemplary noise pulses can be extracted from the silent parts
of archive recordings preceding and/or succeeding the actual sound-
tracks. Extraction can be performed using any general purpose out-
lier detection scheme, e.g. by means of adaptive signal thresholding
based on the 3-sigma rule.

Similar waveforms will be grouped, normalized, time-aligned
and averaged, forming click templates. As a tool for shape similarity
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analysis, we will use the quantity known in statistics as correlation
(normalized covariance) coefficient.

Denote by P = {P1, . . . ,PN} the set consisting of N ex-
tracted noise pulses where Pi = {pi(1), . . . , pi(ki)} is the se-
quence of samples, of length ki, forming the i-th pulse. Denote
by P̃i = {p̃i(1), . . . , p̃i(ki)} the sequence of normalized pulse
samples where

p̃i(k) =
pi(k)− p̄i√∑ki
k=1[pi(k)− p̄i]2

, p̄i =
1

ki

ki∑
k=1

pi(k) . (2)

When comparing two waveforms, say Pi and Pj , one should ac-
count for their (possibly) different length and lack of alignment. To
find the best alignment, we will compute correlation-based similarity
scores between P̃i and the sequence P̃j shifted by τ samples. As-
suming that samples preceding p̃j(1) and succeeding p̃j(kj) have
zero values, the similarity score for the time shift τ can be expressed
in the form

ρij(τ) =

min(ki,kj−τ)∑
k=max(1,1−τ)

p̃i(k)p̃j(k + τ) (3)

where τ ∈ Tij = [1− ki, kj − 1]. Note that the summation range in
(3) accounts for differences in the length of the compared sequences.
The entire set of correlation coefficients ρij(τ), τ ∈ Tij can be effi-
ciently computed using the FFT-based convolution algorithm.

Denote by τij = arg maxτ∈Tij ρij(τ) the time shift maximiz-
ing the similarity score, i.e., the one that guarantees the best align-
ment of P̃i and P̃j . To measure the degree of similarity between
Pi and Pj , we will use the maximum correlation coefficient: rij =
maxτ∈Tij ρij(τ) = ρij(τij).

Based on the set of correlation coefficients {rij , i, j = 1, . . . , N},
one can build an undirected similarity graph G showing an internal
similarity structure of the analyzed set of noise pulse extracts. This
graph has N vertices corresponding to different click waveforms
P1, . . . ,PN . If the degree of similarity between Pi and Pj is suf-
ficiently high, namely, if rij ≥ γ, where γ is a threshold close to
1, e.g. γ = 0.95, the vertices associated with Pi and Pj (i 6= j)
are connected by an edge. Hence, the adjacency matrix of G has the
form

L = [lij ]N×N , lij =

{
1 if rij ≥ γ and i 6= j
0 otherwise

Click templates can be obtained by averaging click waveforms corre-
sponding to maximum cliques ofG [13],[14],[15], i.e., its maximum
complete subgraphs [every two vertices of a complete (sub)graph
must be connected by an edge; the maximum subgraph is the one
with the largest number of vertices]. The proposed procedure is re-
cursive and can be summarized as follows:

Initialize: L1 ← L, G1 ← G, i← 1.
Step 1: Search for the maximum clique Qi of the graph Gi defined
by Li. If there are several maximum cliques with the same number
of vertices ni, choose the one for which the sum of similarity scores
rij takes the largest value (summation being carried over all edges of
Qi). Alternatively, use a computationally more involved algorithm
for finding the weighted maximum clique. If the size of the cliqueQi
is sufficiently large, e.g. if ni ≥ 10, continue to Step 2 – otherwise
Stop.
Step 2: Remove from Gi all vertices and edges of Qi, forming a
new graph Gi+1 with adjacency matrix Li+1 (Li+1 can be obtained
by zeroing the corresponding rows and columns of Li). Set i← i+1
and return to Step 1.

Once all cliques of sufficient size are found, their “centers” are
localized. Denote by Si = {P̃j , j ∈ Ji} the set of normalized pulse
waveforms associated with the clique Qi (Ji is the set indicating
which vertices of G belong to Qi). The central element of Si, de-
noted by P̃ji , is the one for which the sum of outgoing edge weights
(similarity scores) is maximized

ji = arg max
j∈Ji

∑
l∈Ji
l 6=j

rjl .

Such element can be interpreted as the one that is “most similar” to
the remaining elements of Si.

All waveforms grouped in Si are extended with zeros on both
sides, aligned with respect to the central waveform P̃ji , and aver-
aged. Note that the optimal alignment shifts τjil, l ∈ Ji were al-
ready computed at the pre-processing stage. Since averaging shows
tendency to create long tails (small but non-zero values preceding
and succeeding the main pulse activity), and since such tails have
a marginal impact on the subsequent shape similarity analysis, click
templates are obtained by trimming the averaged waveforms, namely
by removing from their beginning and end all samples with abso-
lute values smaller than 5% of the peak value. When the length
of a noise pulse is too short, shape matching becomes an ill-posed
problem. For this reason templates covering less than 4 samples are
eliminated.

3. SELECTION OF FEASIBLE CLICK TEMPLATES

Suppose that the noiseless audio signal s(t) obeys the following au-
toregressive model of order r

s(t) =

r∑
i=1

ais(t− i) + n(t) (4)

where ai, i = 1, . . . , r denote known autoregressive coefficients and
n(t) denotes zero-mean white driving noise with variance σ2

n. The
minimum-variance q-step-ahead prediction of s(t) is given by

ŝ(t+ j|t) =

r∑
i=1

aiŝ(t+ j − i|t), j = 1, . . . , q (5)

where ŝ(t+ j|t) = s(t+ j) for j ≤ 0.
The adaptive prediction formula can be obtained by replacing

known coefficients of the AR model, appearing in (5), with their es-
timates â1(t), . . . , âr(t) yielded by the finite-memory signal iden-
tification/tracking algorithm, such as the well-known exponentially
weighted least squares (EWLS) algorithm, or the least mean square
(LMS) algorithm [16], [17]. The order of autoregression can be fixed
or chosen adaptively using the generalized Akaike’s criterion [18].

The preliminary detection procedure is started each time the out-
lier alarm is raised, i.e., when the magnitude of the one-step-ahead
prediction error ε(t+ 1|t) = y(t+ 1)− ŝ(t+ 1|t) exceeds µ times
its estimated standard deviation σ̂ε(t+ 1|t) = σ̂n(t)

|ε(t+ 1|t)| > µσ̂ε(t+ 1|t) (6)

where µ is the detection threshold multiplier determined experimen-
tally (usually the best results are obtained for µ ∈ [3, 5]; µ = 3
corresponds to the so-called “3-sigma” rule, well-known in statis-
tics).

Denote by Ci = {c̃i(1), . . . , c̃i(mi)}, 1 ≤ i ≤ L the
i-th template (the average, normalized click waveform) and by
M = max1≤i≤Lmi – the length of the longest template. We will
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check the sequence of prediction errors {ε(t+ 1|t), . . . , ε(t+ q|t)},
q > M , for the presence of different click templates by evaluating
the corresponding similarity scores

gi(τ) =

mi∑
k=1

c̃i(k)ε̃(t+ k + τ |t), τ = 0, . . . , τmax (7)

where τ denotes the alignment shift, τmax obeys τmax ≤ q −M ,
and {ε̃(t + 1 + τ |t), . . . , ε̃(t + mi + τ |t)} is the sequence of nor-
malized prediction errors [note that normalization, governed by (2),
must be performed independently for each value of τ ]. Time align-
ment is necessary to account for uncertainties embedded in trigger-
ing the primary detection alarm (determining the moment at which
predictive analysis should start), and in knowing the exact width of
detected pulses. When the shape similarity test is run only for τ = 0
the results deteriorate.

If, for any value of τ ∈ [0, τmax] it holds that gi(τ) ≥ γ0, where
γ0 < γ is the similarity threshold (to account for the bias introduced
by prediction errors, γ0 is set to a smaller value than γ), the template
Ci is regarded as feasible and scheduled for final verification. At any
time, more than one feasible template may be found.

4. FINAL DETECTION OF TYPICAL NOISE PATTERNS

The accuracy of signal predictions ŝ(t+ j|t) usually decreases with
growing prediction horizon j and this fact should be taken account of
when selecting and fitting the most appropriate (the most probable)
click template. Below we will describe a procedure that fulfills this
requirement, further referred to as predictive matched filtering.

Denote by y(t + q) = [y(t + q), . . . , y(t + 1)]T, s(t + q) =
[s(t + q), . . . , s(t + 1)]T, ŝ(t + q) = [ŝ(t + q), . . . , ŝ(t + 1)]T,
δ(t + q) = [δ(t + q), . . . , δ(t + 1)]T the vectors of the corrupted
audio, clean audio, predicted audio and noise pulse samples, respec-
tively. According to (1), it holds that

y(t+ q) = s(t+ q) + δ(t+ q) . (8)

Suppose that the noise pulse coincides with the appropriately scaled,
time shifted and bias-corrected i-th click template Ci, i.e., that the
disturbance vector δ(t+ q) can be written down in the form

δ(t+ q) = αiri(τi) + βihi(τi) (9)

where αi, βi and τi denote the scale, bias and location coeffi-
cients, respectively, and: ri(τi) = [0T

q−mi−τi , c
T
i ,0

T
τi ]

T hi(τi) =

[0T
q−mi−τi ,1

T
mi
,0T
τi ]

T, ci = [c̃Ti (mi), . . . , c̃
T
i (1)]T, 1mi =

[1, . . . , 1]T. The symbols 0i and 1i denote i-dimensional vectors of
zeros and ones, respectively.

To put the template matching problem in the convenient statis-
tical framework, we will assume that the driving noise n(t) in the
AR signal description (4), and hence also the signal s(t) itself, are
normally distributed. In such a case the vector of prediction errors
η(t+ q) = s(t+ q)− ŝ(t+ q|t) is also normally distributed

η(t+ q) ∼ N (0q,Σ(t+ q|t))

where Σ(t + q|t) denotes the q × q covariance matrix of predic-
tion errors which will be derived in the next subsection. Assuming
that r signal samples preceding detection alarm are uncorrupted, i.e.,
y(t− i) = s(t− i), i = 0, r− 1, one arrives at the following likeli-
hood function

p(y(t+ q)|y0(t), ci, αi, βi, τi) = p(η(t+ q)|ci, αi, βi, τi)

=
1√

2π|Σ(t+ q|t)|
exp

{
−1

2
zT
i (τi)Σ

−1(t+ q|t)zi(τi)
}

where y0(t) = [y(t), . . . , y(t−r+1)]T denotes the vector of initial
conditions, |A| denotes determinant of a square matrix A, and

zi(τi) = ε(t+ q)− αiri(τi)− βihi(τi)

where ε(t+ q) = [ε(t+ q|t), . . . , ε(t+ 1|t)]T.
The maximum likelihood (ML) estimates of the coefficients αi,

βi and τi can be obtained by maximizing the likelihood function
specified above, i.e., by minimizing the quadratic cost function

J(αi, βi, τi) = zT
i (τi)Σ

−1(t+ q|t)zi(τi). (10)

This can be achieved in two steps as follows:

Step 1: Determine the best fitting values of αi and βi for consecu-
tive values of τi = 0, . . . , q −mi

{α̂i(τi), β̂i(τi)} = arg min
αi,βi

J(αi, βi, τi) .

It can be easily shown that

α̂i(τi) =
f1f5 − f3f4
f1f2 − f2

3

, β̂i(τi) =
f2f4 − f3f5
f1f2 − f2

3

where f1, . . . , f5 are scalar quantities given by

f1(τi) = hT
i (τi)Σ

−1(t+ q|t)hi(τi)

f2(τi) = rTi (τi)Σ
−1(t+ q|t)ri(τi)

f3(τi) = hT
i (τi)Σ

−1(t+ q|t)ri(τi)

f4(τi) = hT
i (τi)Σ

−1(t+ q|t)ε(t+ q)

f5(τi) = rTi (τi)Σ
−1(t+ q|t)ε(t+ q).

Step 2: Determine the best value of the location parameter τi

τ̂i = arg min
τi

J(τi, α̂i(τi), β̂i(τi)).

The best-matching click template Ci0 , among all feasible ones,
can be found using the following rule

i0 = arg min
i
J(τ̂i, α̂i(τ̂i), β̂i(τ̂i)).

The covariance matrix of prediction errors Σ(t + q|t) can be
easily evaluated using the apprriopriately designed Kalman predic-
tor. The diagonal elements of the matrix Σ(t + q|t) – starting from
its top left corner and ending at its bottom right corner – can be iden-
tified as multi-step-ahead prediction error variances σ2

ε(t+q|t), . . . ,
σ2
ε(t + 1|t); these variances can be also evaluated using the scalar

recursive algorithm proposed by Stoica [20].

5. LOCALIZATION AND INTERPOLATION OF
CORRUPTED SIGNAL SAMPLES

When the noise pulse detected at the instant t does not match any of
the templates, the classical prediction-based approach is used, i.e.,
detection alarm, started at the instant t+1, is terminated at the instant
t+ n+ 1 if r consecutive prediction errors are sufficiently small

|ε(t+ n+ j|t)| ≤ µσ̂ε(t+ n+ j|t), j = 1, . . . , r

or if the length n of the detection alarm reaches its maximum al-
lowable value denoted by nmax. Hence, the corresponding detection
alarm forms a solid block of “ones”: d̂(k) = 1 for k ∈ D̂t =
[t̂B, t̂E], t̂B = t+ 1, t̂E = t+ n.
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When a particular noise template Ci0 is detected, the classical
outlier detection procedure is not pursued and the detection alarm
has the form: d̂(k) = 1 for k ∈ D̂t = [t̂B, t̂E], t̂B = t + τ̂i0 + 1,
t̂E = t+ τ̂i0 +mi0 .

The corrupted signal samples y(t̂B), . . . , y(t̂E) are interpolated
based on r samples preceding and r samples succeeding the recon-
structed fragment – the details can be found e.g. in [12] and [21].

6. ALARM EXTENSION TECHNIQUE

In the presence of “soft” pulse edges, detection alarms are seldom
triggered at the very beginning of noise pulses, which may result
in small but audible distortions of the reconstructed audio material.
The effect described above can be alleviated by decreasing the de-
tection multiplier µ, i.e., by making the detector more sensitive to
unpredictable signal changes. This, however, may dramatically in-
crease the number and length of detection alarms, causing the overall
degradation of the results. The alternative solution, proposed in [12]
and recommended also here, is to shift back the front edge of detec-
tion alarm (once triggered) by a small, fixed number of samples ∆1.
This means that if detection alarm is raised at the instant t + 1, the
template matching procedure is initialized at the instant t−∆1 + 1
instead of t + 1. For the same reason (remember that click tem-
plates are created by trimming the average pulse waveforms), once
detection alarm based on template matching is determined, it is ben-
eficiary to widen it prior to interpolation by moving back its front
edge, and moving forward its back edge by a small, fixed number of
samples ∆2: t̂B ← (t̂B −∆2), t̂E ← (t̂E + ∆2).

7. EXPERIMENTAL RESULTS

Our repository of clicks was made up of N = 500 click waveforms
extracted from an old gramophone record. The bidirectional process-
ing algorithm described in [12], which is very precise in determining
both the beginning and end points of each noise pulse, was used for
this purpose. Based on this training set, 14 click templates, shown
in Fig. 1, were established (γ = 0.95). The information about the
size of the corresponding clique (ni) and the length of click tem-
plate (mi) is displayed beneath each plot depicted in Fig. 1. Note
that

∑14
i=1mi = 226, which means that almost 50% of all extracted

noise waveforms were found to be “typical” and utilized in the pro-
cess of formation of click templates.

The classical outlier detection was based on the AR model of
order r = 10. Signal identification was carried out using the EWLS
algorithm equipped with a forgetting factor λ = 0.99. The detection
multiplier was set to µ = 3.5, the pre-detection similarity threshold
was set to γ0 = 0.8, and the alarm extension parameters were set to
∆1 = ∆2 = ∆ = 2.

Our test (see Tab. 1) was performed on 5 real archive gramo-
phone recordings, sampled at 22.05 kHz. Two approaches were
compared: the AR-model based approach and the one incorporat-
ing predictive matched filtering. Since, in the case considered, the
reference (clean) audio files were not available, the evaluation had
to rely on listening tests. The blind multiple-choice ordering test
was carried out, during which each of 20 test persons was asked to
indicate the best recording among the two evaluated ones. If both
recordings sounded similarly, the listener could mark both of them
as the “best” ones. All auditions were made using the same audio set
equipped with high-quality headphones designed for critical audio
monitoring. The compared recordings, or their selected fragments,
could be played back as many times as needed to reach the final con-
clusion. The advantages of using the proposed technique are clear.
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Fig. 1. A collection of 14 click templates obtained for the set of 500
pulse waveforms extracted from a gramophone record. To preserve
the original look of noise pulses all waveforms were amplitude-
normalized but not debiased.

Table 1. Comparison of the results of declicking based on the
proposed predictive matched filtering approach (PMF) and the AR-
model based approach (AR).

Recording Advantage PMF Advantage AR Deuce
1 17 3 0
2 18 0 2
3 16 1 3
4 16 0 4
5 18 1 1

8. RELATION TO PRIOR WORK

Even though the term “matched filtering” appeared in early publi-
cations on elimination of impulsive disturbances [3], [4], the tech-
nique used there is entirely different from the one proposed in this
paper. The authors of the abovementioned papers analyzed an im-
pact that an idealized (Kronecker-type) noise pulse has on the out-
put of the AR-model based inverse filter. They suggested that in
order to localize such pulses in the input (corrupted audio) signal,
one could convolve the sequence of one-step-ahead signal predic-
tion errors, yielded by the inverse filter, with the sequence made up
of autoregressive coefficients (put in reverse order), and threshold
the obtained results. Quite clearly, this approach does not incorpo-
rate any knowledge of typical noise patterns.
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