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ABSTRACT
In exemplar-based speech enhancement systems, lower dimen-

sional features are preferred over the full-scale DFT features for their
reduced computational complexity and the ability to better gener-
alize for the unseen cases. But in order to obtain the Wiener-like
filter for noisy DFT enhancement, the speech and noise estimates
obtained in the feature space need to be mapped to the DFT space,
which yield a low-rank approximation of the estimates resulting in
a sub-optimal filter. This paper proposes a novel method using cou-
pled dictionaries where the exemplars for the required feature space
and the DFT space are jointly extracted and the estimates are di-
rectly obtained in the DFT space following the decomposition in the
chosen feature space. Simulation experiments revealed that the pro-
posed approach, where the activations of exemplars calculated using
the Mel resolution are directly used to obtain the Wiener filter in
the DFT space, results in improved signal-to-distortion ratio (SDR)
when compared to the system without coupled dictionaries. To fur-
ther motivate the use of coupled dictionaries, the paper also investi-
gates the use of modulation envelope features for the exemplar-based
speech enhancement.

Index Terms— Non-negative matrix factorisation, coupled dic-
tionary training, speech enhancement, modulation envelope

1. INTRODUCTION

Speech recordings taken from realistic environments may contain
added degradations along with the required speech signal which re-
duces its intelligibility as well as results in poor performance in
speech processing tasks like automatic speech recognition (ASR),
speaker recognition, hearing aids etc. The degradation can be intro-
duced by additive background noise, reverberation, etc., and current
state-of-the-art systems employ some mechanism to suppress these
artefacts to enhance the speech signal for better performance and/or
intelligibility.

Approaches to enhance the speech content in a noisy record-
ing can broadly be classified as supervised and unsupervised tech-
niques. Unsupervised techniques are based on spectral subtraction
[1], Kalman filtering [2], make use of the periodic structure in speech
[3] etc. Most of these approaches make stationarity assumptions on
the noise, which are often invalid on practical data. For the su-
pervised case, the speech and noise model parameters are known
a-priori and some of the approaches include codebook-based algo-
rithm [4], models based on hidden Markov models [5] etc. These
approaches yield better performance when compared to the unsuper-
vised methods as the noise model is known a-priori.
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In this work, we investigate speech enhancement on a single-
channel noisy recording in the presence of additive noise using non-
negative matrix factorization (NMF). NMF based models have been
successfully deployed in unsupervised [6], semi-supervised [7] and
supervised [8] speech enhancement methods. This paper concen-
trates on a supervised speech enhancement system, where the mod-
els for speech and noise estimated from the training data are stored
as exemplars, and the corresponding model for the noisy speech is
decomposed as a sparse linear combination of speech and noise ex-
emplars using NMF. To enhance the DFT (refers to the magnitude
of the discrete-Fourier transform throughout this paper) of the noisy
speech, the Wiener filter needs to be found in the DFT domain. But
for features other than the DFT representation, the obtained speech
and noise estimates are to be converted from the feature space to the
DFT domain. This makes the DFT representation a trivial choice for
the exemplars in this framework.

However, the DFT features suffer from increased computational
complexity, poor separation of speech and noise especially in pres-
ence of multi-talker babble noise [9], inability to generalize well to
unseen cases as it retains the speaker-dependent content for eg. the
pitch, etc. which make lower dimensional features a better choice.
But in such a system, the resulting speech and noise DFT estimates,
which are obtained after extrapolating the estimates from the fea-
ture space to the DFT space, will have a degree-of-freedom defined
by the dimensionality of the chosen feature space which is typically
much less than that of the DFT space. Such a low-rank approxima-
tion results in a sub-optimal Wiener filter which cannot account for
all the added noise content and yields reduced SDR.

To effectively utilise the advantages of the lower dimensional
features and to overcome the issue with the low-rank approximation
of the resulting estimates, we propose to use coupled dictionaries:
a front-end dictionary containing the chosen features to obtain the
decomposition, and a back-end dictionary containing the DFT fea-
tures, the DFT dictionary, to reconstruct the estimates directly in the
DFT domain. For a reliable reconstruction, the mapping between
the corresponding exemplars in both the dictionaries should be one-
to-one which is realised by extracting the corresponding exemplars
of the coupled dictionaries jointly from the same piece of training
data. Since in this framework, the DFT dictionary is over-complete
and is coupled to the front-end dictionary, we can enforce a full-rank
reconstruction of the Wiener filter in the DFT domain.

For evaluation, we chose two traditional exemplar-based sys-
tems as baselines; the first one which uses full-scale DFT as features
[10], and the second which uses the Mel-integrated magnitude spec-
tra [11], called the Mel features, which results in a Wiener filter with
reduced degree-of-freedom. Coupled dictionaries with non-negative
representation have been used to increase the spectro-temporal reso-
lution [12]. Here it is used to map low-dimensional spectro-temporal
representations to spectral representations with sufficient frequency
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resolution. The simulation results obtained on the AURORA-2
database revealed that the proposed system with the Mel features as
front-end results in better SDRs when compared to both the baseline
systems. The paper also investigates the use of coupled dictionaries
for modulation spectrogram (MS) [13] features which has recently
been successfully used for blind source separation [14]. The pro-
posed system with MS features also yields improved SDRs over the
baseline systems.

2. METHOD

2.1. Compositional model for noisy speech using NMF

In the supervised setting, the exemplars for speech and noise are
stored as columns in the dictionary matrices As and An, respec-
tively. The exemplars may span multiple frames, T to capture tem-
poral dynamics and are reshaped to a vector. The representation for
the noisy utterance in the exemplar space, Ψ, is also obtained in the
same manner by reshaping overlapping windows of length T [15],
which is then decomposed using NMF to get the activations, X , as:

Ψ ≈
ˆ
As An

˜ »
Xs

Xn

–
= AX s.t. X ≥ 0. (1)

The approximation is done to minimize the Kullback-Leibler diver-
gence between Ψ and AX with additional sparsity constraint on X
[16]. The frame-wise speech and noise estimates, ŝ and n̂ are ob-
tained after removing the windowing effect by adding the compo-
nents belonging to overlapping windows from the estimates AsXs

and AnXn respectively. The frame-level Wiener filter in the exem-
plar domain is then obtained as, W = ŝ� (ŝ + n̂), where� denotes
the element-wise division.

2.2. Proposed method using coupled dictionaries

In the proposed system, the NMF-based decomposition is obtained
in any additive and non-negative feature space of choice which
serves as the front-end of the speech enhancement system. For
simplicity, the front-end features are referred to as the input features
and the dictionary used to obtain the NMF compositional model
is denoted as the input dictionary, Ain =

ˆ
Ain

s Ain
n

˜
. The coupled

DFT dictionary, Adft serves as the output dictionary with which the
speech and noise estimates are directly obtained in the DFT space
using the activations obtained from the front-end, X in as Adft

s X in
s

and Adft
n X in

n respectively.
The proposed system using coupled dictionaries is summarised

in Fig. 1. To obtain the dictionaries, each of the coupled exemplars
for the input and the DFT dictionaries are extracted from the same
piece of training data which span multiple frames of length T , fol-
lowed by reshaping to form a vector. This will result in speech and
noise dictionaries each for the input and DFT exemplar representa-
tions which are denoted as Ain

s , Ain
n, Adft

s and Adft
n respectively. The

notations used to explain the test phase are: Ψin for the noisy speech
represented in the input exemplar domain and [Y ]∗ denotes the ma-
trix obtained after removing the effect of overlapping windows in the
windowed observation Y . All matrix divisions should be considered
element-wise.

The proposed method thus can exploit the ability of various fea-
ture representations to separate speech from noise and can generate
a Wiener filter which has full degree-of-freedom in the DFT space.
In this paper, we investigate the use of the proposed approach for
various features which will be discussed next.

Pre-processed
training data

Input Exemplar
Representation Ain

DFT Exemplar
Representation Adft

Ψin ≈ AinX in

noisy data

W =

ˆ
Adft

s X in
s

˜∗
[AdftX in]∗

TRAINING TESTING

Fig. 1. Block digram overview of the proposed system using coupled
dictionaries.

3. SYTEM DESCRIPTION

3.1. Mel and DFT baselines

For a fair evaluation, we used two baseline systems for speech en-
hancement; one where the exemplars are represented in the DFT
domain and the second which uses the Mel-integrated spectra for
which a conversion is needed to obtain the Wiener filter on the DFT
resolution. The DFT exemplars consist of full-resolution magnitude
spectra with K bins per frame and segments of T frames are re-
shaped to get (K · T ) dimensional exemplars. The Mel exemplars
are obtained by multiplying the DFT segments of size K × T using
the FFT-to-Mel matrix, M , which contains the magnitude response
of B Mel bands along its rows, followed by reshaping to vectors of
size (B · T ). The speech and noise exemplars thus generated are
stored as Adft

s , Amel
s , Adft

n and Amel
n respectively for DFT and Mel

based systems.
The DFT baseline (DFT BL) results are then obtained after find-

ing the compositional model for noisy speech in the full-resolution
DFT domain using the DFT dictionary Adft =

ˆ
Adft

s Adft
n

˜
. The

Wiener filter is directly obtained in the DFT domain using the proce-
dure explained in Section 2.1 and is then used to enhance the noisy
speech [10].

To obtain the Mel baseline (Mel BL), the speech and noise
estimates, ŝ∗ and n̂∗, are first found in the Mel domain using the
steps described in Section 2.1 with the Mel dictionary, Amel =ˆ
Amel

s Amel
n

˜
. These estimates are then extrapolated from the B di-

mensional Mel space to the K dimensional DFT domain using the
transpose of the DFT-to-Mel matrix and the corresponding Wiener
filter is then obtained, using element-wise division, as [11] :

W ∗ =
MT ŝ∗

MT ŝ∗ + MT n̂∗
. (2)

Since M contains triangular shaped filter-banks, this extrapolation
is the same as the piece-wise linear interpolation between B points
(the Mel filter-bank central frequencies) spread across the 1 to K
frequency bins. The resulting filters always fall in the B-dimensional
subspace defined by the columns of MT which cannot account for
all the added noise content along the K dimensional DFT space. The
enhanced speech obtained after applying this filter on the noisy DFT
thus will result in a sub-optimal noise suppression.

3.2. Proposed system with Mel features

The motivation for using Mel features as the input features for the
proposed system are:
1. Poor separation capability of DFT Exemplars: In the DFT based
system, it has been noticed that many of the speech exemplars are
activated for babble noise because of the similarity between the bab-
ble noise and speech exemplars [9], which in turn results in a Wiener
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Fig. 2. Filter coefficients obtained for an arbitrary frame contain-
ing speech with SNR 0dB as a function of the frequency bins. The
color coding is the same for all the figures. a) For car noise which is
present in the training set, the DFT baseline filter better captures the
formant peaks and valleys when compared to that of the Mel base-
line. b) For babble noise, speech exemplars are also activated to
model the noise which results in poorer denoising. c) For the un-
seen restaurant noise, due to poorer modelling, the DFT exemplars
result in retaining most of the noise content whereas the filter coeffi-
cients of the Mel baseline are quite smaller and result in better noise
suppression.
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filter which retains most of the babble noise content (ref. Fig. 2b).
Similar situations were observed for unseen noise cases (ref. Fig.
2c) because the DFT exemplars lead to accurate representation of
training noise cases which results in poor modelling of unseen noise
cases. As a result, NMF will pick speech exemplars also to model the
unseen noise content which results in poorer noise suppression. On
the other hand, Mel exemplars are found to be better able to differ-
entiate speech from the babble noise and result in better separation
(ref. Fig. 2b). The Mel features also have much lower dimension-
ality when compared to the DFT exemplars and reduces the risk of
overfitting to seen noise cases.
2. Piece-wise linear approximation of filter coefficients: As dis-
cussed before, even though the Mel exemplars lead to better separa-
tion, the low-rank approximation of the coefficients in the DFT do-
main fails to capture the detailed structure of the underlying speech
which can be seen in Fig. 2a. It was observed that both DFT and
Mel exemplars yield almost the same separation after NMF, but with
the latter resulting in a filter with lesser peaks and valleys, which is
essential to capture the formant positions and pitch, yields smaller
SDRs.

For evaluation, the Mel and the coupled DFT dictionaries are
jointly extracted first. The noisy data is converted to the Mel exem-
plar representation and is then decomposed using NMF with the Mel
dictionary. The speech and noise estimates are then obtained directly
in the DFT domain using the coupled DFT dictionary as shown in
Fig. 1. This system is referred to as the Coupled Mel system.

3.3. Proposed system with MS features

The MS representation was proposed as part of a computational
model for human hearing which relies on the low frequency am-
plitude modulations within various frequency bands [17]. The MS
representation for acoustical data is obtained using the procedure ex-
plained in [14]. For the NMF based system, this 3D representation
of size b×T×B, is converted to a 2D representation by stacking the

truncated spectra belonging to different channels to get a matrix of
size (B · b)×T , where b, T and B are the number of truncated bins,
number of frames in the MS and number of filter banks used to ob-
tain the MS representation, respectively. Thus for every frame, this
representation has (B · b) dimensional features which are referred to
as MS features.

For evaluation, the Wiener filter is obtained using the procedure
depicted in Fig. 1 with MS features as the input features. Since
phase information in the MS is disregarded (non-negativity), signal
reconstruction is not unique. For instance, any circular temporal shift
(modulo the window length) of the DFT will lead to the same MS ex-
emplar. However, this ambiguity can be reduced greatly if the mag-
nitude spectrogram is sampled fast enough using smaller hop sizes
[18]. Even though using smaller hop sizes to obtain the MS features
lead to temporal oversampling, it is found to be useful for making
the mapping nearly one-to-one and make it useful for the proposed
setup. This system is referred to as the Coupled MS system. To our
knowledge, this is the first use of MS features for exemplar-based
speech enhancement purpose.

4. EVALUATION EXPERIMENTS

4.1. Experimental setup

The experiments were conducted on the Test sets A and B of the
AURORA-2 database which contains utterances of digits from ’0-9’
and ’oh’. The training set contains 8440 clean speech utterances and
6768 noisy utterances with four different additive noise types (sub-
way, babble, car and exhibition hall). Test set A contains six subsets
of noisy utterances corrupted with each of the noise types present in
the training data with varying SNRs (-5,0,5,10,15 and 20 dB), along
with the corresponding clean utterances. Test set B also has the same
number of subsets but for four other noise types (restaurant, train sta-
tion,street and airport). Thus both test sets contain 24 noisy subsets
each along with the corresponding clean utterances. For evaluation,
we selected a random subset of 100 utterances from every noise type
and the SDR improvements obtained are presented.

The coupled dictionaries were obtained for a temporal context
which spans T = 30 frames. The noise data required to obtain the
noise exemplars were obtained from the noisy utterances using the
procedure described in [16]. Both the DFT and Mel exemplars were
obtained using a window length of 25 ms and a hop size of 10 ms.
B = 23 channels were used for the Mel integration of K = 128
bins magnitude spectrogram. To obtain the MS dictionary, equiva-
lent rectangular bandwidth filter banks, using Slaney’s toolbox [19],
with B = 23 channels were used to get the band-limited signals.
The low-pass filter used had a cut-off frequency of 30 Hz and the
magnitude spectra of each of the modulation envelopes were ob-
tained with a window length of 64 ms and hop size of 10 ms. With
the sampling frequency of 8000 Hz and FFT with 128 bins within
the Nyquist frequency, each of the spectra were truncated to the low-
est b = 5 bins which were then stacked and reshaped to get the MS
exemplar.

The simulation experiments were conducted for coupled dictio-
naries of size 10000 exemplars each for speech and noise, resulting
in dictionary sizes 690× 10000, 3840× 10000 and 3450× 10000
each for Mel, DFT and MS representations respectively. The decom-
position was carried out with 700 multiplicative update iterations for
the NMF with sparsity constraint. The Mel and the DFT setup used
a sparsity penalty of 1.5 for speech and 0.5 for noise exemplars as
suggested in [16]. The NMF on the MS exemplars used a sparsity
penalty of 1.75 and 0.75 for speech and noise exemplars respectively
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Fig. 3. Block diagram summary of the processing chains which ob-
tain the Wiener filters for the noisy DFT enhancement for the two
baselines and the two proposed coupled systems.

obtained after a grid search in the range [0, 3] on a subset of 100 ut-
terances in the test set chosen from the complement of the the subset
used for evaluation. The iterations were accelerated with GPUs us-
ing the MATLAB parallel computing toolbox. The entire processing
chain for testing is summarised in Fig. 3 with Ψ{·} representing the
corresponding exemplar representation in various domains.

From the enhanced magnitude DFT, the complex spectrogram
was obtained by using the phase obtained from the noisy speech and
the speech signal in the time domain was obtained using the overlap-
add method. The resulting enhanced speech data for various systems
were compared using the SDR measure in dB using the BSS evalua-
tion toolbox [20].

4.2. Results and discussion

The SDR improvements in dB obtained for the two baseline systems
and the proposed algorithm are shown in Fig. 4. The results ob-
tained for test set A, which contain seen noise types are given in Fig.
4a. It can be seen that both the baseline systems yield almost the
same performance for all the input SNRs. Notice that, even though
the Mel BL involves a low-rank approximation of the estimates, its
performance is comparable to that of the DFT BL. This can be at-
tributed to the ability of the Mel features to better separate speech
from noise when compared to the DFT features. It is also noticed
that, for a system which uses 10000 speech and 4000 noise exem-
plars each, the performance of the DFT baseline system falls below
that of the Mel baseline system, because the higher dimension of the
DFT representation demands more exemplars for over-completeness
and proper modelling of seen noise.

For the proposed setup in test set A, a clear SDR improvement
can be seen for both the Coupled Mel and the Coupled MS systems.
As discussed above, the Mel features yield a better separation and
with the coupled dictionary approach, a ”better” Wiener filter is ob-
tained which yields improved SDR. Notice that both the Mel base-
line and Coupled Mel systems use the same decomposition in the
front-end and results in the same activations. But with the baseline
system undergoing a low-rank approximation, it yields lower SDRs
when compared to the proposed system where the activations ob-
tained are applied to the coupled DFT dictionary to obtain the esti-
mates. The MS features also perform equally well and as the input
SNR increases, impressive SDR improvements are achieved by the
Coupled MS system.

For test set B (ref. Fig. 4b), the DFT baseline performs far
inferior when compared to the Mel baseline system, unlike test set A.
This is because the DFT features yield more accurate representation
of the seen noise cases which makes it poor in generalizing to the
unseen cases as discussed. The SDRs given by the Mel baseline
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Fig. 4. SDR Improvements in dB as a function of input SNRs to eval-
uate and compare the baseline systems with the proposed coupled
systems for seen (test set A) and unseen (test set B) noise cases in the
AURORA-2 database. Legends are same for both the plots.

system even in presence of the low-rank approximation suggest that
the speech and noise separation achieved by the Mel features is far
superior to that of the DFT features.

For the proposed setup in test set B, the Coupled Mel setup result
in improved SDRs for all input SNRs except the 20 dB case when
compared to both the baseline systems. It can also be seen that, the
Coupled MS setup fails to beat the baseline systems for lower input
SNRs. This can also be attributed to the increased dimensionality of
the MS features when compared to the Mel features which results
in overfitting to the seen cases. But as the input SNR increases, MS
features yield improvements and especially with input SNR 20 dB,
the SDR improvement is more than 1 dB.

5. CONCLUSION AND FUTURE WORK

In this work, we presented a novel method to address the low-
rank approximation of the estimates obtained in an exemplar-based
speech enhancement system which uses features other than the full-
scale DFT features. It has also been shown that the proposed system
with coupled dictionaries can be made useful for features where a
direct conversion from the feature space to the DFT space is not
possible; for e.g. the MS features. The simulation results revealed
that the proposed system yields better performance when compared
to the baseline systems in terms of SDR. This is the first use of
modulation envelope features for the exemplar-based speech en-
hancement purpose. The paper also presented a comparative study
between the speech and noise separation capabilities of various
feature representations.

The future work is to further address the dimensionality issues
and the overfitting to seen noise cases. Another focus is to investi-
gate the use of coupled dictionaries for other applications and with
different feature representations. Further uses of the MS features to-
gether with coupled dictionaries for other speech processing related
applications also are to be investigated.
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