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ABSTRACT

In this paper, we propose a postfilter to compensate modulation spec-
trum in HMM-based speech synthesis. In order to alleviate over-
smoothing effects which is a main cause of quality degradation in
HMM-based speech synthesis, it is necessary to consider features
that can capture over-smoothing. Global Variance (GV) is one well-
known example of such a feature, and the effectiveness of parameter
generation algorithm considering GV have been confirmed. How-
ever, the quality gap between natural speech and synthetic speech
is still large. In this paper, we introduce the Modulation Spectrum
(MS) of speech parameter trajectory as a new feature to effectively
capture the over-smoothing effect, and we propose a postfilter based
on the MS. The MS is represented as a power spectrum of the param-
eter trajectory. The generated speech parameter sequence is filtered
to ensure that its MS has a pattern similar to natural speech. Ex-
perimental results show quality improvements when the proposed
methods are applied to spectral andF0 components, compared with
conventional methods considering GV.

Index Terms— HMM-based speech synthesis, over-smoothing,
global variance, modulation spectrum, postfilter

1. INTRODUCTION

Text-To-Speech (TTS) is a technology that can convert any text into
speech, and it plays an important role in many speech applications.
The demand of synthesis techniques that can synthesize natural-
sounding speech is rapidly growing. One of the major reasons that
HMM-based speech synthesis [1] have been an active research target
is its voice control capability [2, 3, 4] based on the elegant frame-
work of HMMs. On the other hand, the quality in synthetic speech
is strongly degraded compared with natural speech and the synthetic
speech sounds muffled [5]. This is because traditional generation
frameworks generate over-smoothed parameter trajectories.

Global Variance (GV) [6] is one of the well-known features to
capture this over-smoothing effect. Despite the fact that the GV is
calculated in a simple form according to the second moment of pa-
rameters, generation algorithms considering the GV can efficiently
alleviate the over-smoothing effect. However, the quality gap be-
tween natural speech and synthetic speech is still large.

In this paper, we introduce the Modulation Spectrum (MS) of
parameter trajectory as a new feature to effectively capture the over-
smoothing effect, and propose a postfilter to compensate MS. The
MS is represented as the power spectrum of the temporal parame-
ter sequence. The effectiveness of the MS in capturing the sound of
speech has been noted in other research area, such as spectral cues
of speech perception [7], and the use as acoustic features in HMM-
based speech recognition [8]. Because the generated sequence is
temporally smoothed, the MS of the synthetic speech tends to be

degraded compared with that of the natural speech even when a
generation algorithm considering GV is used. Therefore, the pro-
posed method filters to fluctuate the generated parameter sequence.
The postfilter is trained using training data consisting of natural and
synthetic speech. Experimental results show quality improvements
when the proposed methods is applied to spectral andF0 compo-
nents, compared with conventional method considering GV.

2. PARAMETER GENERATION IN HMM-BASED SPEECH
SYNTHESIS

2.1. Maximizing HMM Likelihood [9]

In HMM-based speech synthesis, context-dependent HMMs are
trained using natural speech parameters. In synthesis, sentence
HMMs corresponding to input text to be synthesized are constructed,
and speech parameter trajectory is generated to maximize HMM
likelihood under a constraint on the relationship between static and
dynamic features, which is as follows:

ĉ = argmax
c

P (Wc|λ) , (1)

wherec =
[
c⊤1 , · · · , c⊤t , · · · , c⊤T

]⊤
is a speech parameter vector

sequence ofT frames,ct = [ct (1) , · · · , ct (d) , · · · , ct (D)]⊤ is a
D-dimensional parameter vector at framet, d is a dimensional index,
W is the weighting matrix for calculating the dynamic features [9],
λ is a HMM parameter set, respectively.

Parameter sequences generated with Eq. (1) tend to be over-
smoothed, and the synthetic speech sounds muffled compared with
the natural speech.

2.2. Maximizing HMM and GV Likelihood [6]

The GV is defined as second moment of the parameter trajectory,
and is calculated as:

v (c) = [v (1) , · · · , v (d) , · · · , v (D)]⊤ , (2)

v (d) =
1

T

T∑
t=1

(
ct (d)−

1

T

T∑
τ=1

cτ (d)

)2

. (3)

Speech parameter trajectory is generated to maximize both HMM
and GV likelihoods.

ĉ = argmax
c

P (Wc|λ)P (v (c) |λv)
w , (4)

whereλv is a parameter set of GV andw is a weight of the GV like-
lihood. The statistics of the GV are trained from the natural speech
parameters.

The GV generated using Eq. (1) is usually smaller than that of
the natural speech parameters. Compensation of GV by this method
improves speech quality, but the improvements are still limited.
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Fig. 1. Modulation spectrum of 9-th mel-cepstral coefficient se-
quence.

3. MODULATION SPECTRUM ANALYSIS

Though a Modulation Spectrum (MS) is traditionally defined as a
value calculated using the Fourier transform of the parameter se-
quence [10], in this paper we define the MS as its log-scaled power
spectrum. This feature, of course, can represent the temporal fluctua-
tion of the parameter sequence. The MSs (c) of parameter sequence
c is calculated as:

s (c) =
[
s (1)⊤ , · · · , s (d)⊤ , · · · , s (D)⊤

]⊤
, (5)

s (d) = [sd (0) , · · · , sd (m) , · · · , sd (M)]⊤ , (6)

wheresd (m) is them-th MS of thed-th dimension of the parameter
sequence[c1 (d) , · · · , ct (d) , · · · , cT (d)]⊤, m is a modulation fre-
quency index,M is one half number of the Discrete Fourier Trans-
form (DFT) length. In this paper, the MS is calculated from a pa-
rameter sequence that is zero-padded to set its sequence length to
2M .

Here, we analyze the MS of natural and synthetic speech. The
MS mean of the 9-th mel-cepstral coefficient sequence generated us-
ing Eq. (1)（“HMM” ） and Eq. (4)（“HMM+GV” ） are shown
in Fig. 1. Additionally, the MS of natural speech parameter se-
quence (“natural speech”) is shown in same figure for comparison.
It is observed that the MS of “HMM” is markedly degraded com-
pared with that of “natural speech.” This is because temporal fluctu-
ation observed in the natural speech parameter sequence is lost in the
HMM frameworks. We can also find that the MS of “HMM+GV” is
closer to natural one but there is still a big gap between the MSs of
“HMM+GV” and “natural speech.”

From these result, we can expect further improvements in qual-
ity by directly accounting for this difference in the MS.

4. POSTFILTER BASED ON MODULATION SPECTRUM

In this section, we propose a postfilter to compensate the MS of the
generated parameter sequence. The schematic diagram of the pro-
posed method is shown in Fig. 2. Parameters of the proposed post-
filter are trained using natural and generated parameter sequences in
the training data.

4.1. Training Process

The following probability distribution function is estimated from
natural speech parameter sequences:

P (s (c) |λs) = N
(
s (c) ;µ(N),Σ(N)

)
, (7)

Training

Generation

Parameter sequence

Power 
calculation

Modulation spectrum

Statistical model

PhaseGeneration
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Power 
calculation

Power 
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Fig. 2. Schematic diagram of the proposed method.

whereN
(
·;µ(N),Σ(N)

)
is a Gaussian distribution of mean vec-

tor µ(N) =
[
µ
(N)
1,0 , · · · , µ

(N)
D,M

]⊤
and diagonal covariance matrix

Σ(N) = diag

[(
σ
(N)
1,0

)2
, · · · ,

(
σ
(N)
D,M

)2]
, µ(N)

d,m and
(
σ
(N)
d,m

)2
is a

mean and a variance ofsd (m) andλs is a parameter set of MS.

Probability distribution functionN
(
·;µ(G),Σ(G)

)
is estimated in

the same manner using the speech parameter sequences generated
with the generation method described in Section 2. To avoid the ef-
fect of the duration difference between natural and generated speech
parameter sequence, the parameter sequence is generated under the
natural speech duration.

4.2. Synthesis Process

The following filter is applied to the generated speech parameter se-
quencec:

s′d (m) = (1− k)sd (m)

+ k

[
σ
(N)
d,m

σ
(G)
d,m

(
sd (m)− µ

(G)
d,m

)
+ µ

(N)
d,m

]
, (8)

wherek is a postfilter emphasis coefficient valued between 0 and 1.
If k = 1, the MS will be modified to be close to the MS of natural
speech parameter sequences. On the other hand, ifk = 0, the filtered
sequence will be the same as the non-filtered sequence. The filtered
parameter sequence is calculated from the MS and frequency phase
characteristics of the parameter sequence, which are calculated be-
fore filtering.

4.3. Application toF0 Component

While the proposed postfilter can be directly applied to the spec-
tral component, additional process is required for application to the
F0 component because observedF0 contours are not a continuous
sequence. To solve this problem, we use continuousF0 modeling
[11] which can estimateF0 values at the unvoiced frames. Accord-
ing to [12], we estimate theF0 values of the unvoiced frames with
spline-based interpolation. To avoid the MS’s fluctuation of the con-
tinuousF0 contour, we removed micro prosody by Low Pass Filter
(LPF). We believe that the effect of micro prosody on speech quality
is small as referring in [13]. Moreover, we subtracted utterance-
level F0 from originalF0 values before estimating continuousF0

contours to avoid discontinuous transition in zero-padding process.
Since theF0 estimation quality is degraded by spline-based extrap-
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olation, we calculate the MS from the non-silence frames1.
In synthesis, the utterance-level mean and unvoiced/voiced re-

gions of the generatedF0 contour are extracted before applying the
proposed filter. After filtering, first, the filtered continuousF0 con-
tour is calculated in the same manner as the spectral component.
Then, the filteredF0 contour is calculated by adding the mean to
the filtered continuousF0 contour and restoring the unvoiced/voiced
regions.

4.4. Relationship to GV-based Postfilter

A postfiltering process to ensure the GV of the generated parameter
sequence is proposed in [14]. The generated speech parameter are
linearly converted as follows:

ĉt (d) =

√√√√µ
(GV,N)
d

µ
(GV,G)
d

{ct (d)− ⟨ct (d)⟩}+ ⟨ct (d)⟩, (9)

whereµ(GV,N)
d ，µ

(GV,G)
d are the GV mean ofd-th dimension of the

natural and synthetic speech parameters in the training data, respec-
tively, and⟨ct (d)⟩ is the mean ofd-th dimension of the synthetic
speech parameters. In this method, since only the variance of the
sequence is considered, the MS degradation is not completely re-
covered, thus the generation of parameters including temporal fluc-
tuation of natural speech parameters is difficult. On the other hand,
the proposed method can recover this fluctuation because we directly
consider the MS itself. Therefore, the proposed method can be ex-
pected to yield quality improvements.

According to the Perceval’s theorem, the power of a temporal
sequence is preserved during a DFT. the GV defined in Eq. (3) repre-
sents the power of the sequence except the bias component. Because
the MS is defined as the power spectrum of the sequence, the sum
of the MS over all modulation spectra except the bias component is
equivalent to the GV2. In the GV-based postfiltering process, MSs of
all modulation frequency except bias is converted in the same way.
Namely, the GV-based conversion process is special case of the pro-
posed MS-based conversion process under the following conditions:

µ
(·)
d,m = 0, σ

(·)
d,m =

{
1 m = 0

µ
(GV,·)
d otherwise

, (10)

in which the postfilter emphasis coefficient is set to1. Conversely,
the proposed method can convert MSs in each modulation spectrum
individually.

5. EXPERIMENTAL EVALUATION

5.1. Experimental Conditions

We trained a context-dependent phoneme Hidden Semi-Markov
Model (HSMM) [15] for a Japanese female speaker. We used 450
sentences for training and 53 sentences for evaluation from phonet-
ically balanced 503 sentences included in the ATR Japanese speech
database [16]. Speech signals were sampled at 16 kHz. The shift
length was set to 5 ms. The 0th-through-24th mel-cepstral coeffi-
cients were extracted as spectral parameters and log-scaledF0 and
5 band-aperiodicity [17, 18] were extracted as excitation parame-
ters by the STRAIGHT analysis system [19]. The feature vector

1We also considered simple approaches to estimateF0 of silence such as
the use of utterance-level mean ofF0 or the use of theF0 value in the nearest
voiced frame. However, we have confirmed that current method is better to
model the MS.

2Properly describing, the sum of linear-scaled MS except bias is equiva-
lent to GV.
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Fig. 3. HMM likelihood for the
filtered spectral parameters.

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 0  0.2  0.4  0.6  0.8  1

Natural speech

HMM+GV+MS

HMM+MS

Filter coefficient

Lo
g-

sc
al

ed
 li

ke
lih

oo
d

Fig. 4. HMM likelihood for the
filteredF0 contours.

-150

-100

-50

 0

 50

 100

 0  0.2  0.4  0.6  0.8  1
Filter coefficient

Lo
g-

sc
al

ed
 li

ke
lih

oo
d

Natural speech
HMM+GV+MS

HMM+MS

Fig. 5. GV likelihood for the fil-
tered spectral parameters.

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 0  0.2  0.4  0.6  0.8  1

Natural speech

HMM+GV+MS

HMM+MS

Filter coefficient
Lo

g-
sc

al
ed

 li
ke

lih
oo

d
Fig. 6. GV likelihood for the fil-
teredF0 contours.

consisted of spectral and excitation parameters and their delta and
delta-delta features. Five-state left-to-right HSMMs were used. The
DFT length to calculate MS is set to 4096, which is over the max-
imum frame length in training and evaluation data. A 10 Hz-cutoff
LPF is used to remove the micro prosody3.

We conducted some evaluations with the following systems:

HMM： generated with Eq. (1)
HMM+MS： applied the proposed postfilter to “HMM”
HMM+GV ： generated with Eq. (4)
HMM+GV+MS： applied the proposed postfilter to “HMM+GV”

Note that the postfilter of “HMM+GV+MS” is trained using param-
eter sequences generated with GV.

5.2. Objective Evaluation for Emphasis Coefficient

In order to determine the filter emphasis coefficient for the spectral
andF0 components, we calculate the HMM likelihood, GV likeli-
hood, and MS likelihood for filtered parameter sequence for settings
of the emphasis coefficient from 0 to 1. For comparison, the likeli-
hood for natural speech parameter sequence is calculated.

3We evaluated training accuracy of MS likelihood in various cutoff fre-
quencies, and we have confirmed that this setting is the best.
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The HMM likelihood, GV likelihood, and MS likelihood for fil-
tered spectral parameters are shown in Fig. 3, Fig. 5 and Fig. 7,
respectively. It is observed in Fig. 3 that the HMM likelihoods of
“HMM+MS” and “HMM+GV+MS” decrease as the emphasis co-
efficient increases, and their values are always higher than that of
“natural speech.” In the GV likelihood shown in Fig. 5, we can see
that these likelihoods cross that of “natural speech” at0.85. On the
other hand, MS likelihoods increase as the coefficient increases but
their values always lower than “natural speech.” From these results,
we determined filter emphasis coefficient for spectral component to
be0.85.

Those likelihoods for the filteredF0 contour are shown in Fig.
4, Fig. 6 and Fig. 8, respectively. The transition of these likelihoods
as the coefficient changes show the same tendency as those for the
spectral components except the relation with the likelihoods of “nat-
ural speech.” We can find that all likelihoods of “HMM+MS” and
“HMM+GV+MS” are higher than “natural speech” when setting the
emphasis coefficient over0.75, and we can also find that the coeffi-
cient1.0 is the highest point of MS likelihood. From these results,
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Fig. 11. Examples of the natural and generated 4th mel-cepstral co-
efficient sequence.

we set the coefficient to1.0.

5.3. Subjective Evaluation for Speech Quality

To evaluate the quality improvements yielded by the proposed post-
filter, we conducted a preference test (AB test) on speech quality
by eight listeners for the spectral andF0 components4. Every pair
of these four types of synthetic speech was presented to listeners in
random order. Listeners were asked which sample sounds better in
terms of speech quality. The “HMM” system is used for the compo-
nent that the proposed methods were not applied to.

The result of the preference test for spectral component is shown
in Fig. 9, and an example of the spectral parameter sequence is
shown in Fig. 11. We can see that the score of “HMM+MS” sys-
tem dramatically increases over the “HMM” system, and achieves a
similar score to the ”HMM+GV” system. Additionally, further im-
provement by applying the proposed method to “HMM+GV” can
be observed. From these result, the effectiveness of the proposed
method in quality in the spectral component was yielded.

Similarly, the preference score for theF0 component is shown in
Fig. 10. Again, “HMM+MS” and “HMM+GV+MS” achieve a bet-
ter score than “HMM,” but there are not additional gains over when
GV is considered. The reason why the score differences among con-
ventional and proposed methods are smaller than those in the spec-
tral components is that both natural and generatedF0 contour tran-
sitions are smoothly and these MSs are closer than those in spectral
parameter sequence.

6. SUMMARY

In this paper, we proposed a postfilter to compensate the modula-
tion spectrum of the generated parameter trajectory in HMM-based
speech synthesis. The experimental results demonstrated that the
quality improvements by the proposed method are yielded for both
spectral andF0 components. As future work, we will incorporate
the modulation spectrum to the parameter generation algorithm.
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4Some samples are available fromhttp://isw3.naist.jp/

˜ shinnosuke-t/sample_mspf.html .
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