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ABSTRACT

The human ability to localize sound-source direction using just
two receivers is a complex process of direction inference from spec-
tral cues of sound arriving at the ears. While these cues can be de-
scribed using the well-known head-related transfer function (HRTF)
concept, it is unclear as to how densely HRTF must be sampled and
whether a higher-order representation is employed in localization.
We propose a class of binaural sound source localization models
to answer these two questions. First, using the sound received by
two ears, we derive several binaural features that are invariant to the
sound source signal. Second, these are implicitly mapped to a high-
dimensional reproducing kernel Hilbert space via a Gaussian pro-
cess regression model for feature-direction tuples. Lastly, the fea-
tures that are most relevant in the model are found via an efficient
forward subset-selection method. Experimental results are shown
for HRTFs belonging to the CIPIC database.

Index Terms— Gaussian process regression, head-related trans-
fer function, source cancellation algorithm, subset selection

1. INTRODUCTION

Many animals posess a remarkable omnidirectional sound localiza-
tion ability enabled by subconsciously processing subtle differences
between the sounds received in two ears from a common source lo-
cation. For humans, these differences are due to the incoming acous-
tic wave scattering off the listener’s anatomic features (head, torso,
pinna) before reaching the eardrum. The spectral ratio between the
sounds recorded at the eardrum and at the center of the head in ab-
sence of the listener is known as the head-related transfer function
(HRTF) [1]; it is specific to the individual’s anthropometry and to
the wave direction. HRTF contains important cues such as interaural
time delay (ITD) and interaural level difference (ILD) [2] and HRTF
use for virtual auditory synthesis provides life-like accuracy in sound
localization [3, 4, 5].

A source localization algorithm employing only two receivers
would be of interest in machine perception area (e.g. for event detec-
tion and localization [6]). However it is currently unknown how the
mapping between binaural cues and source location is done in mam-
malian brain. In this paper, we investigate the sound source localiza-
tion (SSL) problem in terms of binaural features derived from signals
received by left / right ears in response to a static sound source (see
section 2). Our features are not unlike the HRTF (in particular, they
do not depend on source signal) and can be viewed as HRTF gen-
eralization. The feature representation’s relevance to sound-source
directions is explored within non-parametric regression frameworks
such as Gaussian process regression (GPR) [7].

In the SSL problem, regression models between predictor (bin-
aural features) and output (sound source directions) variables are
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learned. GPR is a non-parametric (number of parameters is propor-
tional to the number of feature to direction inputs) kernel method
that places weak assumptions on prior mean and covariance between
output variables and is capable of automatic model-order selection
and Bayesian inference. The predictor variables implicitly map to a
reproducing kernel Hilbert space whose inner products are taken to
be evaluations of a valid Mercer kernel or covariance function [8].
Moreover, Gaussian processes (GPs) generalize nearest-neighbor
(NN) methods1 as the former can infer outputs outside the training
set; the predicted sound source directions (GP posterior mean func-
tion) are linear combinations of non-linear covariance evaluations
between training and test feature inputs (see Fig. 1 and section 3).
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Fig. 1. GP training, inference, and subset-selection sub-systems.

The non-parametric aspect allows one to determine which input
samples are most relevant to GP inference. We use a standard greedy
forward-selection (GFS) method [9] that sequentially includes new
feature-direction tuples (without replacement) in section 3.1. The
ranking of these samples depends on an objective risk function to be
minimized. We derive such a class of risk functions based on GP
inference, which is efficiently computed (see section 3.2). Experi-
mental results with the CIPIC HRTF database [10] show that the GP
models are more accurate than least squares (LS) and NN methods
(see section 4). We also show that subset selection via GFS results
in much lower generalization GP error than random subset selection.

Related Work: In human and machine perception, a number of
authors have attempted to use HRTF in SSL [11]. For example, in
the matched filtering / source cancellation algorithms, the ratio be-
tween left and right ear signals [12] [13] [14] [15] is cross-correlated

1Non-parametric classifier where each HRTF feature and measurement
direction is a separate class exemplar and label.
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Table 1. Derivation of feature variables X from signals SL and SR.

log
(∣∣∣ SL
SR

∣∣∣+ 1
)

= log
(
|HL|
|HR|

+ 1
)

Log-magnitude ratio

∠ SL
SR

= ∠HL − ∠HR Phase difference
|SL|

0.5(|SL|+|SR|)
= 2|HL|
|HL|+|HR|

Avg magnitude ratio

{|SL| , |SR|} = {|HL| , |HR|} Magnitude pair

with all left / right HRTF ratios over the sphere of directions and the
direction maximizing correlation is presumed to be source direction.
Other authors use cue mapping [16] [6] [17] using features such as
ITD, ILD, interaural envelope difference, and notch frequency and
classifiers such as linear regression, weighted kernel-NN, and self-
organizing map. Statistical models have also been proposed; [18]
derives a conditional probability map from ITD / ILD to infer di-
rection via a maximum aposteriori estimator [18], and [19] learns
a probabilistic affine regression model between interaural transfer
functions and direction.

2. FEATURE REPRESENTATIONS

Using HRTF definition [1], we express the received left/right ear
signals SL, SR as convolution of the source signal S with left/right
HRTFs HL, HR for the source direction; in the frequency domain,
convolution reduces to pointwise multiplication SL = HL ◦ S and
SR = HR ◦ S.

In Table 1, we derive several HRTF-like2 features. The log-
magnitude ratio is a percentage change in the relative signal loud-
ness in left and right ears. The phase difference contains mostly ITD
information related to source azimuth. The average magnitude ratio
is a difference in contribution of left/right HRTF to the binaural av-
erage. The magnitude pair is essentially the left and right HRTFs per
se concatenated. Note that each feature is frequency-dependent and
is thus a vector with length equal to the number of frequency bins
in Fourier transform; for CIPIC database with HRIR length of 200
samples, the vector length is 200 for the magnitude pair feature and
100 for the three others.

3. GAUSSIAN PROCESS REGRESSION

In a general regression problem, one predicts a scalar target variable
y from a D-dimensional vector x of independent variables based
on a collection of available observations. In a parametric model,
the problem is one of estimating a fixed set of parameters based
on training data. When a parametric model is unknown, a com-
mon Bayesian approach for inference marginalizes over a distribu-
tion of latent function realizations f(x) assumed to have generated
the noisy observations in y = f(x) + ε; noise term ε ∼ N (0, σ2) is
zero centered with constant variance σ2.

A GP f treats latent function realizations f(x) as a collec-
tion of random variables where any finite subset sampled at inputs
X = [x1, . . . , xN ] is multivariate Gaussian [f(x1), . . . , f(xN )] ∼
N (µ(x),K(X,X)) and defined by a prior mean µ(X) ∈ RN×1

and covariance or Gram matrix K(X,X) ∈ RN×N of pairwise
covariance function evaluations between inputs x ∈ X . The prior
mean µ(x) can be taken to be zero without loss of generality.

For N known training input pairs in X, y and N∗ test pairs in
X∗, f∗ = f(X∗), GP inference follows the conditioning of test out-
puts on the test inputs and training pairs, which is also a multivariate

2Similarly to HRTF, they do not depend on the source signal S; hence, in
the remainder of the paper we compute them directly from HRTF.

Gaussian P (f∗|X, y,X∗) ∼ N (f̄∗, Σ̄∗) defined by posterior mean
and covariance functions given by

f̄∗ = KT
f∗K̂

−1y, Σ̄∗ = K∗∗ −KT
f∗K̂

−1Kf∗, (1)

where K̂ = K(X,X) + σ2I adjusts for the observation noise and
Kf∗ = K(X,X∗) ∈ RN×N∗ are pair-wise covariance evaluations
between training and test inputs. In our SSL model, we treat the pos-
terior mean f̄∗ for inputs X∗ in Eq. 1 as one of three predicted coor-
dinates along the standard basis; three independent GPs are specified
and trained on a common set of features X in Table 1 that map to
single coordinate direction y normalized to be on the unit sphere.
Each GP is initialized with the same covariance function whose hy-
perparmeters can be trained without cross-validation.

We specify the covariance function as products of identical class
(ν) Matérn functions across each of the D input variables given by

K 1
2
(r, `) = e−

r
` , K 3

2
(r, `) =

(
1 +

√
3r

`

)
e−
√

3r
` ,

K∞(r, `) = e
− r2

2`2 , K(x, x′) = α2
D∏
k=1

Kν(|xk − x′k|, `k),

(2)

for distance r and hyperparameters α, `k. In the general case, a hy-
perparameter Θ can be optimized via maximum log-marginal data
likelihood function with its gradient given by

log p(y|X) = −1

2

(
log |K̂|+ yT K̂−1y +N log(2π)

)
,

∂ log p(y|X)

∂Θi
= −1

2

(
tr
(
K̂−1P

)
− yT K̂−1PK̂−1y

)
,

(3)

where P = ∂K̂/∂Θ is the matrix of partial derivatives.

3.1. Greedy Forward-Selection

Feature selection in a non-parametric setting such as GPR finds a
subset of feature-direction training samples that best generalizes a
test set. The main advantage of a greedy subset-selection heuristic
is the reduction of a general NP-hard search problem to the one with
the cost quadratic in terms of number of the objective risk function
R evaluations. Algorithm 1 summarizes this approach; for subset
r at round t, inputs Xr̂ 6∈r are ranked by the risk function R(Xr∪r̂)
and one with the lowest rank is incorporated into the GP model and
is discarded from consideration for all future rounds.

Algorithm 1 Greedy Forward Selection (GFS)
Require: Training inputs X, y, and risk function R(X).

1: r ← ∅ \\ Initial empty subset at round t = 0
2: for t = 1 to N do
3: r ← {r, arg minr̂ 6∈r R (Xr∪r̂)} \\Minimize risk
4: end for
5: return r

Adding a new input pair (xr̂, yr̂) to a GP model at round t is
efficient due to the proposed recurrence relations between Gram ma-
trices before and after the union of subset r with r̂ in r̆ = r∪ r̂ given
by

K(r̆) =

[
K(r) krr̂
kTrr̂ kr̂r̂

]
=

[
K(r) 0

0 1

]
− uuT + vvT ,

krr̂ = K(Xr, Xr̂), kr̂r̂ = K(Xr̂, Xr̂) + σ2,

(4)
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where vectors u =
√
||w||

2

(
w
||w|| + et

)
, v =

√
||w||

2

(
w
||w|| − et

)
,

w =
[
−kTrr̂, 1−kr̂r̂

2

]T
, and et is the tth column of the identity ma-

trix. The inverse covariance matrix follows the modified Woodbury
formulation [20] given by

K−1
(r̆) = K̄−1 + duūū

T − dv v̄v̄T , K̄−1 =

[
K−1

(r) 0

0 1

]
,

ū = K̄−1u, du = (1− < ū, u >)−1 ,

v̄ =
(
K̄−1 + duūū

T
)
v, dv = (1+ < v̄, v >)−1 ;

(5)

as such, only two rank-1 updates are required. The new log-
determinant is given by log

∣∣K(r̆)

∣∣ = log
∣∣K̄∣∣ − log dudv . For

fixed test inputs, the posterior mean remains a matrix-vector product
and the posterior variances are sums of diagonals given by

f̄∗r̆ = K∗r̆K
−1
(r̆)yr̆, su = K∗r̆ū, sv = K∗r̆ v̄,

diag
(
Σ̄∗r̆

)
= diag

(
Σ̄∗r + k∗r̂k

T
∗r̂ + dusus

T
u − dvsvsTv

)
,

(6)

where matrix K∗r̆ = K(X∗, Xr̆). Updating the GP prior and pos-
terior models require O

(
t2
)

and O (N∗t) operations respectively.

3.2. Risk Function Criterions

One class of risk functions R is the L2 Euclidean distance between
two functions evaluated at a possibly infinite sized set of test in-
puts X∗. The L2 distance between two GP posterior mean functions
f̄a = K∗aK̂

−1
a ya and f̄b = K∗bK̂

−1
b yb is analytic assuming that

prior mean m(x) = 0 and that the covariance function belongs to
Matérn class (Eq. 2). Then, the squared errors over the set of test
inputs X∗ is given by

L2
X∗

(
f̄a, f̄b

)
=

∑
x∗∈X∗

(f̄a − f̄b)2

= zTa Qaaza − 2zTa Qabzb + zTb Qbbzb,

(7)

where vectors za = K̂−1
a ya ∈ RNa , zb = K̂−1

b yb ∈ RNb are
computed over training data. If the set of test inputs X∗ is finite,
then matrices Qaa =

∑
x∗∈X∗ Ka∗K∗a ∈ RNa×Na , Qab =∑

x∗∈X∗ Ka∗K∗b ∈ RNa×Nb , and Qbb =
∑
x∗∈X∗ Kb∗K∗b ∈

RNb×Nb are sums of outerproducts whose i, jth entry are products
of Matérn class covariance functions in Eq. 2. If the set of test inputs
X∗ = (−∞,∞) is the full input domain, then matrices Qaa =∫∞
−∞Ka∗K∗adx∗ ∈ RNa×Na , Qab =

∫∞
−∞Ka∗K∗bdx∗ ∈

RNa×Nb , and Qbb =
∫∞
−∞Kb∗K∗bdx∗ ∈ RNb×Nb contain im-

proper integral entries. For a valid distance measure, the pos-
terior mean functions converge to identical zero-mean priors at
the limits x∗k → ±∞ and the improper integrals of the form
Qaibj =

∏D
k=1 Fνijk given by

Fνijk =

∫ ∞
−∞

Kν(|xaik − x∗k|, `ak)Kν(|xbjk − x∗k|, `bk)dx∗k,

(8)

are shown to be finite (see Appendix Eq. 10).
Several combinations of the L2 distance are shown in Table 2:

The prediction error is taken at known feature-direction tuples. The
generalized error is evaluated at a finite set of test inputs (out-of-
sample) between GPs evidenced on the subset-selected and full set of

Table 2. Combination of risk functions R
L2
X

(
f̄(r̆), y

)
Prediction error at known y

L2
X∗

(
f̄(r̆), f̄(X)

)
Generalized error at any X∗

L2
(−∞,∞)

(
f̄(r̆)

‖f̄(r̆)‖ ,
f̄(X)

‖f̄(X)‖

)
Normalized error over domain

feature to direction pairs. The normalized error (“frequentist”) risk
is integrated over the entire input domainX∗ with uniform probabil-
ity distribution where ‖f‖ =

√∫∞
−∞ f(x)2dx. Note that computing

the risk function between successive rounds t is efficient as the pos-
terior mean function f̄(r̆) = K(∗r̆)K

−1
(r̆)yr̆ need only rank-1 updates

via Eq. 5. The associated matrix Qr̆X in Eq. 7 evaluated between
subset r̆ and the full input set X is a sub-matrix of the pre-computed
matrix QXX . Criterion functions such as information gain are not
considered as posterior covariance related functions (inverse, deter-
minant) are expensive to compute or may be intractable.

4. EXPERIMENT RESULTS

For training data, we use the left and right ear HRTFs from the CIPIC
[10] database belonging to subject 156. Our error metric follows the
angular separation distance between two directions u, u’ given by

dist (u, u’) = cos−1 < u, u’ >
||u||||u’|| , u, u’ ∈ R3. (9)
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Fig. 2. Mean angular errors for subset-selected GPs with covariance
K∞ are shown across feature types and rounds. Both risk functions
for prediction error (solid) and normalized error (dashed) show bet-
ter generalization than randomized (dotted) subsets. Intercepts with
horizontal lines indicate subset sizes at 5◦ and 1◦ errors.

Cross-Validation: GP models are trained on a randomized data
subset3 and predict spatial directions on the full dataset; GPs evi-
denced on the randomized subset infer directions at test inputsX∗ =
X via Eq. 1. For a baseline, we compare against NN4 and OLS5

methods. The mean angular separation between predicted and ref-
erence directions in Eq. 9 are computed along all, horizontal plane,
and median plane directions in Table 3; minimum errors per fea-
ture and subset of directions are in bold. Non-parametric methods

3Training is done on 1/3 of all available data; the training subset contains
1250/3 = 417 feature-direction tuples. Hyperparameters are trained for 50
iterations using resilient backpropagation [21].

4Euclidean distance between full and training feature sets.
5y = Xβ for input features X and parameters β.
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Table 3. Mean angular errors in degrees (full, h-plane, m-plane)
Mag. pair Avg. ratio Log ratio Phase diff.

OLS 5.4, 4.7, 5.3 22, 20, 18 29, 32, 25 27, 21, 22
NN 3.9, 4.7, 4.2 7.9, 9.2, 11 9.2, 10, 11 20, 22, 28

GPR K1/2 1.8, 1.7, 2.5 7, 7.4, 12 7.2, 6.8, 8.9 12, 12, 15
GPR K3/2 1.4, 1.5, 2.2 4.8, 5.5, 8.2 7.5, 9.5, 11 11, 14, 13
GPR K∞ 1.3, 1.3, 1.6 4.8, 4.8, 8.8 6.3, 12, 10 6.3, 5.2, 13

as NN and GPR outperform parametric methods as OLS across all
feature types. The left and right HRTF magnitude pairs and aver-
age magnitude ratio features give the lowest errors; their results are
shown in the first and the third plots in Fig. 3. OLS results suggest
that log-ratios are oversensitive predictors of change in localization
direction, whereas NN results suggest that using phase difference /
ITD is insufficient for localizing in elevation.

Greedy Forward-Selection: The relevant input samples are
found using the GFS Algorithm 1 using varying subset size. At
round t, the updated GP model infers directions along the full set
of input features. The angular separation errors w.r.t. reference
directions are computed in Fig. 2. The crossover points at 5◦ mean
angular error show that magnitude pair and average magnitude ratios
require about 50 and 150 training samples for human-level accu-
racy. Both risk function criterions outperform randomized subset
selection in all but the phase difference features. The improvement
over the randomized set is apparent in the second and fourth plots
of Fig. 3 where directions further from the vertical plane are more
accurately localized.

5. CONCLUSIONS

We developed a robust SSL method using source-independent,
HRTF-like features and GP models. Our method generalizes NN-
based techniques and is more accurate due to efficient model selec-
tion; both GP hyperparameters and most relevant training samples
were automatically learned. Experimental results have shown that
accurate localization over the full sphere is possible using only a
small fraction of the typically-sampled HRTF data points when
average magnitude ratio features are used. We leave extensions to
SSL in reverberant conditions using linear combinations of SL, SR
signals for future work.

A. MATÉRN PRODUCT INTEGRALS

F 1
2
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Fig. 3. Mercator projections of GP (covariance K∞) predicted di-
rections evidenced with randomized and subset-selected inputs (pre-
diction error risk function R in Table. 2) are shown.
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