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ABSTRACT

We introduce the generalized extreme value distributions as
descriptors of edge-related visual appearance properties. The-
oretically these distributions are characterized by their limit-
ing and stability properties which gives them a role similar
to that of the normal distributions. Empirically we will show
that these distributions provide a good fit for images from a
large database of microscopy images with two visually very
different types of images. The generalized extreme value dis-
tributions are transformed exponential distributions for which
analytical expressions for the Fisher matrix are available. We
will show how the determinant of the Fisher matrix and the
gradient of the determinant of the Fisher matrix can be used
as sharpness functions and a combination of the determinant
and the gradient information can be used to improve the qual-
ity of the focus estimation.

Index Terms— generalized extreme value distribution,
information geometry, edge statistics, auto-focus, image-
based screening

1. OVERVIEW AND BACKGROUND

Edge detection is one of the first and most important opera-
tions in all technical and biological vision systems. It is there-
fore important to understand the relation between the statisti-
cal properties of the space of input images and the statistical
properties of the resulting edge detector values. In this paper
we mainly consider images from an automated microscope
taking focus series of cells with two different types of stain-
ing. We have thus two sets of images with two visually differ-
ent properties, the optical properties of the system in the form
of the focus plane are systematically varied and the optimal
focus setting is established with the help of an independent
measuring process. Statistical properties of edge detectors
have been studied earlier, mainly in the context of natural im-
age statistics (see [1, 2, 3, 4, 5, 6, 7] for some examples). The
main observation is that the distributions of these filter results
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usually have heavy tails, with the (two-parameter) Weibull
distribution as the most popular choice. In this paper we
will use the generalized extreme value (GEV) distributions
which come in three different types: the Fréchet-, (reversed)
Weibull- and Gumbel-distributions. We will compare the fit-
ting properties of the GEV distributions with those of the stan-
dard Weibull distribution and show that the fitting results for
the GEV are comparable or slightly better than those for the
Weibull distributions.

The second topic we investigate is the usage of concepts
from information geometry [8, 9] where probability distri-
butions are points on a manifold and methods from differ-
ential geometry are used to study the relation between dif-
ferent distributions. Typical concepts used are the distance
between distributions or the shortest path (the geodesic) be-
tween them. Both, Weibull- and GEV-distributions, can be
derived by transformations from the exponential distribution
and closed form expressions for the metric of these manifolds
are therefore available (see [10, 11]). In the general case we
can, however, not apply the tools of information geometry
directly since the domains on which these distributions are
defined vary depending on the value of their parameters. We
thus use only local properties following a similar approach
used to generalize transformation groups to local transforma-
tion groups, see [12]. Using tools from differential geom-
etry we introduce a local metric in the space of the GEV-
distributions with the help of the Fisher matrix. For the focus
sequences we show that the determinant of the Fisher matrix
can be used as a sharpness function. For dynamic focus se-
quences the change of the probability distributions between
consecutive frames can be measured in the Fisher geometry
and combining the static sharpness function with the charac-
terization of the dynamic change improves the autofocus re-
sults. This approach is similar to the framework developed
in [13] where it is shown how geometry-based optimization
methods can be used to improve the efficiency of auto-focus
control.

The study of efficient implementations or the compari-
son to existing auto-focus methods is outside the scope of
this study. The fact that these images can be described by
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a parametric model for which analytic expressions of the rel-
evant geometric variables are available is however an advan-
tage compared to methods that completely depend on empiri-
cal values such as the data variance.

2. IMAGES, FILTERS AND DISTRIBUTIONS

In the following we will use the microscopy images from
set BBBC006v1 in the Broad Bioimage Benchmark Collec-
tion which is described in [14]. The images are available
at http://www.broadinstitute.org/bbbc/BBBC006.
The database contains 52224 images from 384 cells, mea-
sured at two positions and prepared with two different types
of staining. For each position and each cell a focus se-
quence consisting of 34 images was recorded. This resulted
in 384x2x2x34 = 52224 images. The images show stained
human cells and the imaging process is desribed as follows:
For each site, the optimal focus was found using laser auto-
focusing to find the well bottom. The automated microscope
was then programmed to collect a z-stack of 32 image sets.
For one cell we show four images in Figure 1. We see fo-
cus position 7 in the top and position 16 in the bottom row.
Stainings W1 are in the left and W2 in the right column.

In the experiments we use filter kernels defined on a win-
dow consisting of 5x5 pixels. The filters are constructed with
the help of the representation theory of the dihedral group
and correspond to the 2-dimensional irreducible representa-
tions of the dihedral group (the details of this construction
can be found in [15] and [16]). In the current application the
following properties are essential: (1) each filter kernel con-
sist of an equal number of +1 and -1 filter coefficients, (2) the
filters come in pairs fx, fy , roughly corresponding to an x-
and a y-gradient filter, (3) for a 5x5 window there are six such
filter pairs and (4) for the filter results ex, ey , obtained by ap-
plying the two filters fx, fy , the squared magnitude e2x + e2y
is independent under the application of all operations of the
dihedral group elements to the underlying window. From
the six filter pairs used we obtain six filter magnitude val-
ues m1, . . .m6 in each pixel and as the final filter result we
use their summ = m1+. . .+m6. From the definition follows
that this filter result is the combination of six different edge-
like filter responses. We will only use this setup for the filter
process so that all statistical evaluations are based on the same
pre-processing results. We use these filters since they have a
strong theoretical foundation in group representation theory
and since they are very fast, consisting of addition and sub-
traction of pixels values only. For other filter systems (like the
Gabor-based Gist filters [17]) we found similar properties.

The original microscope images were scaled-down and
then pre-processed with a simple combination of gray-value
thresholding and morphological operations to construct a
mask in which dark background regions are suppressed. 360
images out of the 52224 images in the database contained
too few object points and where therefore excluded from the

Fig. 1: Images z7/W1&W2,z16/W1&W2, see main text

analysis. In a second series of experiments we constructed
the same mask as described above but we replace the original
(12-bit) pixel values g by their log transform gl = log(1+ g).

The magnitude filter results from the pixels under the
mask are characterized by GEV-distributions. Theoretically
the GEV-or Max-Stable distributions are attractive since they
share two main characteristics with the normal distributions:
they are limit-distributions and they are stable. The “Ex-
tremal Type Theorem” (Theorem 1.4.2 in [18]) states that
if a suitably normalized sequence of random variables Mn

of the form Mn = max(ξ1, . . . , ξn) converges to a non-
degenerate distribution then that limit-distribution must be of
one of the three types of GEV-distributions mentioned below.
This is a result that corresponds to the central limit theorem
that state that the sum of random variables converges to the
normal distribution. The second characteristic of the nor-
mal distributions is that the sum of two normally distributed
random variables is also normally distributed. If we replace
the sum with the maximum operation then we obtain the
max-stable distributions and a fundamental theorem (The-
orem 1.4.1 in [18]) states that max-stable distributions are
GEV-distributions and vice versa. Practically we can expect
that the additional third parameter adds more flexibility to
two-parameter models like the two-parameter Weibull distri-
butions and that we can therefore expect better fitting results.
Note that pixels that contribute to the distribution fitting are
selected using a masking procedure. We thus have an indirect
thresholding process suppressing positions with low filter
results.

The GEV-distributions are characterized by three parame-
ters: location (µ), scale (σ) and shape (ξ) and the three param-
eter Weibull distribution is given by the (different) parameters
location (µ), scale (β) and shape (α). Depending on the value
of the shape parameter ξ the GEV-distributions are known as:
Gumbel distributions (ξ = 0), Fréchet distributions (ξ > 0)
and Weibull distributions (ξ < 0). More information about
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these distributions (and the sometimes confusing naming con-
ventions) can be found in [18]. It is often argued that GEV-
distributions are more flexible since they “let the data decide”
which of the models fits best. In the following the distribution
parameters are estimated from measured data with the help of
maximum-likelihood estimators.

We write p(x; θ) = pθ(x) to denote the probability den-
sity function (pdf) of a distribution parametrized by the pa-
rameter vector θ and F (x; θ) = Fθ(x) for the correspond-
ing cumulative density function (cdf). For a stochastic vari-
able h(x) and a distribution pθ(x) we write the expectation
of h as: Eθ (h). In this notation the cdfs of the GEV distribu-
tions (with positive shape parameter ξ) are given by:

F (x;µ, σ, ξ) =

{
e−(

ξ(x−µ)
σ +1)

−1/ξ

if ξ(x−µ)σ + 1 > 0;

0 else.

The cdf for the standard three-parameter Weibull distri-
bution is F (x;µ, β, α) = 1 − e−β

−α(x−µ)α for x > µ. It
follows that the support of these distributions varies depend-
ing on the parameter values and the standard assumptions of
information geometry are therefore not applicable.

For parametric probability distributions with general pa-
rameter vector θ = (θ1, ..., θK) and pdf p(x; θ) the Fisher
information matrix G(θ) = (gkl) with elements gkl is defined
as

gkl =

∫
x

∂ log p(x; θ)

∂θk

∂ log p(x; θ)

∂θl
p(x; θ) dx (1)

The properties of the Fisher matrix make it theoretically
attractive but it is often difficult to compute analytically. For
the Weibull and the GEV-distributions the situation is differ-
ent since they can be derived by transformations from the ex-
ponential distribution (see [10, 11, 19]). We note that µ is only
a shift parameter and the Fisher matrix is therefore a func-
tion of the variables σ and ξ only. Symbolic expressions of
the partial derivatives of the determinant of the Fisher matrix
were computed with the help of Mathematica. We use only
local properties following a similar approach used to gener-
alize transformation groups to local transformation groups,
see [12].

3. EXPERIMENTS

First we illustrate the quality of the fittings for the Weibull and
the GEV-case and give an overview over some results regard-
ing the goodness-of-fit. We used the coefficient of determina-
tion (denoted by R2) as g.o.f. measure which measures the
similarity between the empirical cdf and the model cdf. It has
a maximum value of one (see [20]). We found that the GEV-
distributions gave higher fitting values than the corresponding
Weibull distributions and that the fittings were slightly better
for the log-transformed images.

For some of the images either the Weibull or the GEV dis-
tributions (or both) did not fit the data very well. In Table 1
we show the mean values of the R2 values taken over all im-
ages where the mininum value was greater 0.5 (first line) or
greater than 0.9 (second line). We see that the values for the
GEV-fittings is slightly higher for both the results computed
from the original pixel values (columns three and four) and
from the values computed from the logarithmic pixel values
(columns five and six). We see also that the vast majority of
slices (and certainly all slices with meaningfull content) fit
these distributions (column two).

T. Images Wbl. GEV LogWbl. LogGEV
0.5 51323 0.9776 0.9856 0.9774 0.9888
0.9 49148 0.9824 0.9947 0.9820 0.9891

Table 1: Mean R2 Values

More detailed information of the relation between the val-
ues for the Weibull and the GEV-fittings can be seen in the
quantile-quantile plots in Figure 2.

(a) Scale 0.5 - Original Pixel

(b) Scale 0.5 - Log Pixel

Fig. 2: Quantile-quantile plot of g.o.f. R2-Values

The GEV distribution comes in three different types, de-
pending on the value of the shape parameter ξ. For the ex-
periments with the logarithmic pixel values we illustrate the
distribution of the shape parameters obtained for the two im-
age types W1 and W2. The result in Fig 3 shows that almost
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all distributions for image type W2 have positive shape pa-
rameters whereas a majority of the distributions fitted to the
W1 images have negative shape values.

(a) Image Type W1 (b) Image Type W2

Fig. 3: Histograms of Shape Parameter for Log. Pixel Values

An analysis of the Fisher matrices for the 3-parameter
Weibull fittings (using Matlabs wblfit function) shows that
many distributions are actually located on a two-dimensional
submanifold. This confirms earlier observations that it is
sufficient to consider the two-parameter Weibull distribu-
tion which ignores the possible influence of the location
parameter. In Figure 4b we show the mean values of the
(normed) inverse of the determinant of the Fisher matrix
of the GEV distributions as a function of the focus setting.
Here we used the Matlab gevfit function to compute the
maximum-likelihood estimates of the parameters. We see a
clear difference between the images based on the two differ-
ent stainings but all of them peak in the focus interval z=16
and z=21 which is an acceptable focus range according to the
benchmark description.

(a) Image Type W1 (b) Image Type W2

Fig. 4: Inverse of the Determinant Value of the GEV-Fisher
Matrix as a Sharpness Function

Figure 4 shows that the determinant of the Fisher matrix
provides a measure of the sharpness of an image. It is how-
ever static and does not take into account the relations be-
tween the current image and the neighboring images in the
focus sequence. Intuitively one can guess that the best focus
position should be a critical point where the increased sharp-
ening changes to an increased blurring. The curve describing
the changes of the distributions in the manifold should there-
fore have a critical point at the best focal position too. We can
therefore use the information about the gradient of the deter-

minant to improve the focusing. As an illustration we com-
puted the cosine of the angle between the gradient vectors of
the determinant sharpness function from two consecutive fo-
cal images. The angle is computed in the geometry given by
the Fisher matrix. When these vectors point into the same di-
rection (focusing or blurring) the angle should be small and
the cosine large. For the critical point the cosine should be
small. The mean value of the cosine values computed over
all images of type W1 computed from the log-pixel images is
shown in Fig. 5. We can see a clear local minimum for focus
position 16 which is the ground truth position.

Fig. 5: Cos Angle LogGEVW1

4. SUMMARY AND CONCLUSIONS

We introduced GEV-distributions in the analysis of visual de-
scriptors of the edge-magnitude type. We showed that for
large classes of images they provide very good statistical fit-
tings. Since they are related to the exponential distribution we
were also able to derive analytical expressions of the Fisher
matrix and functions derived from it. In particular we illus-
trated how to use the gradient of the determinant of the Fisher
matrix as an additional sharpness indicator.

No attempts were made to develop efficient implementa-
tions of the processing steps and the computation times are
therefore high but they can certainly be improved using opti-
mization methods similar to those described in [13].

Finally we want to point out that the results described are
derived using three general principles: The filter functions are
based on the symmetry properties of the sensor array, the se-
lection of the distributions is motivated by their characteristic
limit and stability properties and the determinant of the Fisher
matrix as a sharpness function is based on the geometric prop-
erty of the volume. All of them are natural choices in the gen-
eral context in which they are introduced and none of them
is designed for the specific task of designing an autofocus al-
gorithm. This framework should therefore also be useful in
other applications besides analyzing the focusing properties
of imaging systems.
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