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ABSTRACT

Deconvolution offers an effective way to improve the res-
olution of optical microscopy data. While fast algorithms
are available when the point spread function (PSF) is shift-
invariant (SI), they are not directly applicable in thick sam-
ples, where the problem is shift-variant (SV). Here, we pro-
pose a fast iterative shrinkage/thresholding 3D deconvolution
method that uses different PSFs at every depth. This is re-
alized by modeling the imaging system as a multi-rate filter-
bank, with each channel corresponding to a distinct 3D PSF
dependent on the position along the optical axis. The com-
plexity associated with the thresholded Landweber update in
each iteration of our SV algorithm is equivalent to that of an
iteration in an SI algorithm, multiplied by the number of chan-
nels in the filter-bank. We simulated images of a set of beads
embedded in an aqueous gel, using varying PSFs along the
optical axis, to illustrate the effectiveness of our algorithm.

Index Terms— Optical microscopy, spatially-variant de-
convolution, wavelets, sparsity, fast iterative shrinkage/thres-
holding algorithms (FISTA).

1. INTRODUCTION

Optical microscopy is an important tool for imaging live sam-
ples. Volumetric, three-dimensional (3D) imaging is possible
in weakly-scattering objects by collecting a stack of images
while focusing the microscope objective at different depths
in the sample. In wide-field microscopy, images are con-
taminated by out-of-focus light from planes above and be-
low the examined plane. This results in a spatial blur, par-
ticularly in the axial direction. The image formation pro-
cess is usually modeled as a linear space-invariant (SI) op-
eration, where the 3D object is magnified and convolved with
the response of an impulse, the point spread function (PSF).
The 3D object can be restored via multiple algorithms [1],
including the classic Landweber deconvolution method [2].
While the space-invariance assumption is reasonable for rela-
tively thin samples, when imaging thicker samples, the shape
of the PSF varies with depth, particularly when there is a
mismatch between the refractive indices of the immersion
medium (ni), any cover-slip (ng) and sample (ns) (Fig. 1).
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Fig. 1. Each 2D plane imaged during optical sectioning, gk,
can be modeled as an inner-product (along z) between the
original 3D data stack forig and the depth-varying PSF h>k .

To restore images obtained with depth-dependent PSFs, sev-
eral algorithms have been proposed that involve breaking the
dataset into smaller blocks on which efficient SI deconvolu-
tion algorithms can be applied [4, 5]. The quality of such
approaches depends on the size of the blocks and the care-
ful design of transition masks to merge them once decon-
volved. Other approaches approximate the depth-varying blur
as a spatially weighted combination of SI convolutions [3,
6]. In this paper, we present an approach that directly con-
siders a depth-variant PSF deconvolution problem, yet pre-
serves the form of a highly efficient SI deconvolution method.
Specifically, we model the imaging system as a multi-rate fil-
ter bank, where each plane along the optical axis is assigned
to a channel with a different PSF; the filter bank structure
leads to a Landweber deconvolution that uses an iterative-
shrinkage/thresholding algorithm (ISTA).

This paper is organized as follows. In Section 2, we intro-
duce the image formation model and the inverse problem. In
Section 3, we describe the proposed method. In Section 4, we
characterize the algorithm on simulated images. Finally, we
discuss the algorithm and conclude in Section 5.
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Fig. 2. Block diagram of shift-invariant FISTA deconvolution (SI-FISTA, (a)+(c)) and proposed shift-variant FISTA deconvo-
lution (SV-FISTA = (b) + (c)). Both algorithms are based on a reblurring operation and Landweber iterations: (a) reblurring in
SI-FISTA [7, 8]; (b) reblurring in proposed SV-FISTA; (c) thresholded Landweber deconvolution: the structure and complexity
of the thresholding stage remains the same for SI-FISTA and SV-FISTA. (See text for descriptions of variables and symbols.)

2. PROBLEM STATEMENT

We consider a 3D object with local intensity forig(x, z), x =
(x, y) ∈ R2, z ∈ R, imaged with a system characterized by
3D PSFs hk(x, z) that are dependent on the axial position
(depth) of the microscope stage dk = k∆d, where ∆d is the
step by which the stage is moved between the acquisition of
each slice. The 2D blurred image on the camera for stage
position d = dk can then be modeled as:

gk(x) =

∫∫∫
forig(ξ, η)h>k (ξ − x, η)dξdη + bk(x), (1)

for k = 0, . . . ,M − 1 measured slices, where h>k (x, z) ,
hk(−x,−z) and bk denotes additive measurement noise.
Note that this model is laterally- but not axially-shift-invariant
since we do not require hk(x, z) = h0(x, dk + z).

We sample forig and hk on a discrete 3D grid with Nx ×
Ny × Nz voxels, with lateral and axial sampling steps ∆x
and ∆z, respectively. Similarly, we sample gk to form an
Nx×Ny image, with lateral sampling step ∆x. Note that the
stage position k∆d (associated to image gk) can be different
from k∆z (the position of the kth slice in forig) [9]. This
mismatch is captured by the space variant PSF model, which
we assume is known a priori. After discretization, Eq. (1)
becomes:

g = Hforig + b, (2)

or, further expanded to reveal the matrices for each slice: g0

...
gM−1

 =

 DH0

...
DHM−1

 forig +

 b0

...
bM−1

 , (3)

where Hk are (Nx ·Ny ·Nz)× (Nx ·Ny ·Nz)-sized block-
circulant matrices (for 3D circular convolution with hk), D
is the (Nx ·Ny)× (Nx ·Ny ·Nz)-sized down-sampling ma-
trix that selects only the first z-plane of Hkforig, and where
gk, forig and bk are vectors containing lexicographically ar-
ranged samples of gk, forig and bk, respectively.

The inverse problem is to find an estimate f̄ of forig, given
g and H. We follow a transform-domain sparsity-based re-
construction approach [10, 7, 8] that assumes forig has a sparse
wavelet representation forig = Wworig, where W is the syn-
thesis matrix whose columns are the elements of the wavelet
basis and worig is a set of (sparse) wavelet coefficients. The
estimate f̄ = Ww̄ is found through minimization of the cost
function:

C(w) , ‖g −HWw‖22 + λ‖w‖1, (4)

=

M−1∑
k=0

‖gk −DHkWw‖22 + λ‖w‖1, (5)

where ‖ • ‖p is the `p-norm operator and λ is a non-negative
scalar quantity controlling wavelet regularization. Efficient
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solutions to problem (5) have been proposed when H is
block circulant using Shannon [7] and generic wavelet bases
[8] with the sub-band dependent ISTA (Fig. 2 (a) and (c)).
We previously showed that this method remained applica-
ble (with minimal computational overhead) in the context of
multi-view microscopy [11]. Although our axially SV decon-
volution problem has the form of a multi-channel filter bank,
the down- and up-sampling operations (Fig. 2 (b)) require
additional adjustments for the implementation to be efficient,
as detailed in the section below.

3. METHOD

Vonesch and Unser [7, 8] have introduced an efficient multi-
level sub-band dependent ISTA solution to the minimiza-
tion problem (5) by considering the wavelet decomposition
f = Ww =

∑
s∈SWsws, where ws = W̊>

s f denotes
the wavelet coefficients in the sub-band s ∈ S (set of all
sub-bands) that is characterized by its analysis and synthe-
sis matrices W̊s and Ws, respectively. The ISTA solution
involves alternating between two steps: (i) a Landweber up-
date of the wavelet coefficients from the previous iteration,
and (ii) wavelet sub-band weighted soft-thresholding of the
coefficients computed in (i). The performance of ISTA can
be further sped up by computing the next iterate based not
only on the previous one, but also on two or more previously
computed iterates (fast ISTA, (FISTA) [12]). Specifically, the
steps of the minimization are:

w(n)
s = w̃(n)

s +

(
τ(n−1) − 1

τ(n)

)(
w̃(n)
s − w̃(n−1)

s

)
, (6)

where w
(n)
s are the wavelet coefficients in the sub-band s dur-

ing the n-th iteration, and the temporary coefficients:

w̃(n)
s = Tλα−1

s /2

{
w(n−1)
s + α−1s r(n−1)s

}
, (7)

are obtained via the soft-thresholding operation:

Tθ(w) , sgn(w) max (|w| − θ, 0) , (8)

(with sgn denoting the signum function) after subtracting the
residuals:

r(n−1)s , W>
s H>

(
g −H

∑
s′∈S

Ws′w
(n−1)
s′

)
, (9)

with weighing factors:

τ(n) =
1 +

√
1 + 4τ2(n−1)

2
, (10)

αs ≥
∑
s′∈Sj

ρ
(
W>

s′H
>HWs

)
, s ∈ Sj . (11)

The latter weights for sub-bands s ∈ Sj (set of all sub-bands
in scale j) are obtained from the spectral radius operator
ρ(A)[13] (with A> denoting the complex-conjugate trans-
pose of A). These weights greatly accelerate convergence
[8]. Commonly used initial conditions include τ(0) = 1 and
w̃

(0)
s = w

(0)
s = W̊>

s g. The block diagram of this minimiza-
tion approach is summarized in Fig. 2.

The matrix formulation is only formal as the matrices’
large sizes are computationally prohibitive in practice. Nev-
ertheless, efficient implementations of this algorithm have
been derived when H>H is block circulant [7, 8, 11], which,
however, is not the case for the SV problem at hand (due to
the axial downsampling-upsampling operations). We there-
fore derived efficient ways to compute (a) H>H, and (b)
the sub-band dependent weighting constants αs. Although
H>H is not block-circulant, each Hk is block-circulant and
all operations executed in the analysis and synthesis side of
the filter-bank can still be computed using only point-wise
multiplications and additions using 3D discrete Fourier trans-
forms (DFT). Specifically, the equivalent implementation of
freblurred = H>g and f

(n)
reblurred = H>Hf (n) using 2D/3D

DFTs is given by:

f̂reblurred[u, w] =

M−1∑
k=0

ĝk[u] · ĥ∗k[u, w], (12)

f̂
(n)
reblurred[u, w] =

M−1∑
k=0

(
Nz−1∑
`=0

ĥk[u, `] · f̂ (n)[u, `]
Nz

)
ĥ∗k[u, w],

(13)

where â (and â∗) denotes the 2D/3D DFT (and its complex-
conjugate) of discrete image/volume a, u = [u, v], for 0 ≤
u < Nx, 0 ≤ v < Ny , and 0 ≤ w < Nz . Using similar
expressions, we determine the sub-band dependent weights
αs in (11) using the power method [13] for an undecimated
wavelet decomposition as:

αs = lim
m→∞

∑
s′∈Sj

∑
u,w

(
b̂ · â(m)

s′,s

)
[u, w]∑

u′,w′

(
b̂ · â(m−1)s′,s

)
[u′, w′]

, (14)

â
(m)
s′,s [u, w] ,

M−1∑
k=0

Nz−1∑
`=0

(
ĥk · ψ̂s · â(m−1)s′,s

)
[u, `]

Nz


·
(
ψ̂∗s′ · ĥ∗k

)
[u, w], (15)

where ψ̂s denotes the DFT of the wavelet or scaling function
that spans the subspace associated with sub-band s, while b̂
and â

(0)
s′,s are random (nonzero) signals. This can be read-

ily extended for a wavelet decomposition scheme with dyadic
subsampling by aliasing the frequency components of â(m)

s′,s

(s′, s ∈ Sj) in (15) to be periodic by Nx/2
j , Ny/2

j and
Nz/2

j , along x, y and z, respectively. Good estimates of
αs can be obtained from as few as 10 iterations in (14).
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Fig. 3. Deconvolution results: (a)-(b) forig, (c) g, (d) SI-
FISTA result (using hmean), (e) SV-FISTA result, (f) SERG
comparison.

4. EXPERIMENTAL RESULTS

In order to illustrate the performance of our algorithm, we
considered a 3D stack (64 × 64 × 64) with 15 point sources
located at different axial positions (Fig. 3(a-b)). We next gen-
erated M = 64 blurred 2D observations using the following
PSF parameters (Fig. 1): objective NA = 0.9, ni = 1, working
distance ti = 1.9mm, ng = 1.515, thickness of cover-glass
tg = 175µm, ns = 1.33, ∆x = ∆y = 0.5µm, ∆z = 0.8µm,
∆d = 0.59µm. We added Gaussian white noise to the blurred
result (Fig. 3(c)) with noise variance set such that the blurred
signal-to-noise ratio (BSNR, [7]) was equal to 40 dB.

We conducted two independent deconvolution experi-
ments with the blurred observations. In the first case, we
applied spatially-invariant FISTA deconvolution (SI-FISTA,
adapted from [8] using a Level-1 cubic spline dyadic wavelet

decomposition and λ = 0.1), where we used only a single
3D PSF at a time (either h0, h20, h40, h60, or the mean of all
64 PSFs hmean, after compensating for axial-shift). Since the
PSF shape varies with depth, none is appropriate; we show
the volume obtained with hmean after 50 iterations (Fig. 3(d)).
Next, we reconstructed a volume using our proposed spatially
variant FISTA deconvolution (SV-FISTA), using 64 different
point spread functions, with all parameters similar to the SI-
FISTA experiment. The reconstructed volumes have fewer
artifacts (Fig. 3(e)). The evolution of the signal-to-error gain
(SERG) in both experiments is shown in (Fig. 3(f)), where

SERG(f) , 20 log10

(
‖g − forig‖2
‖f − forig‖2

)
. (16)

We implemented the algorithm in Matlab (MATLAB
R2011b) and ran the experiments on a Windows 64-bit ma-
chine, equipped with a dual-core Intel Xeon 3.4-GHz CPU
and 16 GB RAM. The pre-computation of the sub-band de-
pendent weight constants (αs) for the given set of parameters
was done using 10 iterations of the power method in (14),
which took about 1 minute per iteration. Note that com-
putation of these weights is only required once for a given
imaging setup (i.e. all frames of a time-lapse would use the
same weights). The iterative image reconstruction process
took about 5.5 seconds per iteration, of which 5 seconds were
spent computing the reblurred signal by applying H>H. By
contrast the shift invariant method took about 0.55 seconds
for each iteration. In both cases, updating the wavelet coef-
ficients by soft-thresholding the Landweber update is com-
puted in 0.5 seconds, since the SV filter-bank structure does
not introduce any additional complexity (Fig. 2(c)). These
results are in line with the theoretical complexity, whose or-
der is M times more complex than that of the shift-invariant
method. Because the computation in each of the M -channels
could be done independently of that of the other channels, the
workload could be delegated to a cluster of computers at each
iteration to bring down the effective computation time.

5. DISCUSSION AND CONCLUSION

We have presented a fast ISTA algorithm for deconvolution
problems with PSFs that are depth-variant. The algorithm
naturally handles differing sampling steps associated with the
blurred data stack (stage position step ∆d) and the PSF ker-
nel (∆z). Also, the multi-channel framework can handle a
number of blurred z-slices (M ) independent of the dimen-
sions of the PSF kernel and reconstruction (in practice, we
set M ≥ Nz), which could even be non-uniformly spaced.
Since the proposed SV-FISTA is applied to the entire dataset
rather than blocks, it does not require post-processing with
suitable transition masks to fuse individually deblurred re-
gions. A limitation of our approach is that the algorithm does
not handle lateral shift-variant PSFs. Further work will in-
clude comparison to block-wise deconvolution methods.
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