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ABSTRACT

This paper presents a new mathematical formulation and
the corresponding algorithms for structured sparse principal
component analysis (PCA). We introduce a new concept of
support matrices with structured prior based on Markov Ran-
dom Field (MRF). Both the support matrices and principal
components are regularized by the L1 norm to be integrated
in a coupled objective function to recover the structured
sparsity from the given data. Block coordinate descent and
subgradient-based optimization methods are utilized to search
for proper local minima for the formulated non-convex opti-
mization problem. We implement the proposed methods to
jointly analyze micro-RNA (miRNA) and gene interaction
data to identify miRNA-gene co-regulatory modules (co-
modules). Our preliminary experiments demonstrate that our
structured sparse PCA has the potential to identify meaningful
co-regulatory modules with enriched cellular functionalities.

Index Terms— Sparse Learning, Structured Sparse PCA,
Variable Integration, Feature Clustering

1. INTRODUCTION

Principal component analysis (PCA) is a classical method to
summarize observed data for more concise representation and
dimension reduction [1]. One limitation of traditional PCA is
that the principal components typically involve contributions
from all originally observed variables, which may not be able
to provide an easy interpretation of the aggregated informa-
tion in these principal components. In order to have learned
components with interpretable functional meanings, alterna-
tive methods have recently been proposed, such as notably
nonnegative matrix factorization (NMF [2]) as well as several
versions of sparse PCA (SPCA) with different assumptions
and applications [3–5].

In addition to the efforts of deriving sparse principal com-
ponents, in real-world applications, we also expect that con-
tributing variables to principal components may have some
relationships with each other in physical world, explicitly or
implicitly. These “structured” relationships among contribut-
ing variables can help us better interpret data and provide new
insights into the underlying processes. For example, in neu-
roimaging, we are interested in localizing effective areas in
Positron Emission Tomography (PET) and functional Mag-
netic Resonance Imaging (fMRI) signals so that we can iden-

tify regions that are associated with different activity states or
patterns in brain that may be associated with certain diseases
such as Alzheimer’s disease [6–9]. In computation biology
and bioinformatics, it is commonly believed that the cellu-
lar functions arise from elaborate coordination between mul-
tiple bio-molecules. Deriving relevant information that cap-
ture the structured signals, for example from biological func-
tional pathways or modules, may help better understand the
underlying cellular mechanisms and provide accurate prog-
nosis and diagnosis of potential phenotypic changes that may
represent different disease states [10, 11].

In this paper, we propose a novel way to solve the struc-
tured sparse PCA problem. Instead of directly imposing both
sparsity and structure constraints to contributing variables in
principal components, we achieve the structured sparsity with
the help of “support matrices” that we introduce to our new
optimization formulation. Unlike the structured sparsity-
including norm (SSIN) in [8], which imposes convexity
structure constraints and may not be necessarily realistic
in different real-world applications, we would like to have
more flexible and general structure constraints. By introduc-
ing binary support matrices as auxiliary variables, we can
impose the structured sparsity constraints by having L1 norm
regularization together with a Markov Random Field (MRF)
smoothness constraint on support matrices. Our new MRF
Structured Sparse PCA (MS2PCA) is formulated as a coupled
optimization problem to simultaneously solve for principal
components and support matrices. Due to the flexibility of the
MRF structure constraints, we expect that our new MS2PCA
method can derive more general structured sparse compo-
nents which may have adaptive and flexible structures based
on inherent relationships of observed variables. We evaluate
the performance of MS2PCA for the identification of miRNA-
gene co-regulatory modules based on an integrated data set
of miRNA-gene and gene-gene interactions as detailed in the
following section.

2. CO-REGULATORY MODULE IDENTIFICATION

It has been recently conjectured that miRNAs may play crit-
ical regulatory roles in gene regulatory networks. However,
the specific functionalities of many miRNAs and their combi-
natorial effects in cellular processes are still unclear [12]. By
integrating diverse genomic data to identify the co-regulatory
modules of miRNAs and genes (co-modules), we may derive
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Fig. 1. Identification of miRNA-gene co-regulatory mod-
ules [12]. X1 denotes miRNA expression data, X2 is gene
expression data; A represents miRNA-gene interaction data,
and B is gene-gene interaction data.

better understanding on miRNAs and their functional roles in
different cellular processes.

Figure 1 illustrates the co-module identification problem
originally given in [12]. Assuming that we have both the
miRNA (X1) and gene expression data (X2) together with the
curated prior knowledge of the interactions among miRNAs
and genes (A and B), we would like to derive principal com-
ponents that best explain the observed expression patterns. At
the same time, we would like the derived principal compo-
nents capture the functional relationships between miRNAs
and genes, which can be enforced by imposing structured
sparsity penalty based on the known interaction data in our
MS2PCA formulation. We note that our problem formula-
tion and the optimization is different from the original work
in [12], which relies on sparse network-regularized multiple
nonnegative matrix factorization (SNMNMF) to figure out the
underlying structure of the given data. The nonnegative re-
quirement in SNMNMF may restrict the application of the
method and introduce bias regarding the underlying struc-
ture. We will compare their performances using the same
integrated data set.

3. MRF-BASED STRUCTURED SPARSE PCA

We now develop our MS2PCA framework in a synthesis fash-
ion [8] to find a set of factors or dictionary bases as principal
components with the minimum reconstruction error for the
given observed data. In this paper, the observed expression

data is represented as an observation matrix X =

[
X1

X2

]
∈

Rp×n with n columns corresponding to n samples. There are
p random variables denoting the total number of miRNAs and
genes in the given data. We take D to denote the “dictionary”
or the set of K principal components, which is a p ×K ma-
trix with Di

j denoting the matrix entry at the ith row and jth

column. Dk represents the kth column vector of D, which
corresponds to the kth principal component. We introduce a
binary support matrix S ∈ {0, 1}p×K and PS(D) represents
the corresponding projection of the matrix D onto the space
of matrices supported by S:

PS(D)ij =

{
0 if Si

j = 0
Di

j if Si
j = 1

PS⊥ is the complementary projection of PS with PS(D) +
PS⊥(D) = D [13]. || · ||F is the matrix Frobenius norm,

e.g. ||X||F =
√∑

ij(X
i
j)

2. We take ‖ · ‖2 as the vector L2

norm with ||Xk||2 =
√∑

i(X
i
k)2 and ||X||1 =

∑
i,j |Xi

j |
denotes the L1 norm. Finally, sign(x) is the signum func-
tion, which takes on the sign of x if x is non-zero; Otherwise
if x = 0, it takes any value in [−1, 1]. For a given matrix X ,
sign(X) is a matrix in which each element takes the signum
function value of the corresponding element in X . With the
derived support matrices S and principal components D, we
can identify corresponding co-regulatory modules by assign-
ing the co-module membership of miRNA (or gene) i based
on its corresponding z-scores in the derived jth principal com-
ponents Dj in D, which has been similarly done in [12].

3.1. Mathematical Formulation
Given the observed data X , our MS2PCA finds the ma-
trix D ∈ Rp×K as principal components and the matrix
A ∈ RK×n as principal component scores so that DAT can
approximate X as closely as possible. We formulate our
MS2PCA problem as the following optimization problem:

min
D,A,S

||X − PS(D)AT ||2F + λ3

∑
k ||Dk||1 (1)

+λ1

∑
k ||Sk||1 + λ2

∑
k

∑
(a,b)∈Φ |Sa

k − Sb
k| (2)

s.t. ||Ak||2 ≤ 1 ∀k (3)

We emphasize that we introduce a support matrix S to
bring in a more general structure prior. As given in (2), we
include in the objective function a smoothness term for S,
which is similar as in the Ising model and Markov Random
Field models [13–15]. At the same time, each column Sk

is regularized by the L1 norm to make sure that only a lim-
ited number of variables are contributing to the correspond-
ing principal components. For principal components D, in
addition to the L1 norm regularization, the coupling with S
will render structured sparsity to its corresponding principal
components: When Si

k = 0, the previous formula implicitly
forces Di

k → 0 due to its L1 norm regularization for spar-
sity and the corresponding ith variable will not contribute to
the kth principal component as it will not help reduce the re-
construction error after the projection. In fact, we generally
can model all p observed variables by a graph G = (V,Φ),
in which V is the set of vertices corresponding to p variables
that may have potential contributions to each principal com-
ponentDk, and Φ denotes the edges connecting all inherently
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related variables, which provide the potential structure prior.
In our co-module identification problem, we can derive the
edge set Φ from both the miRNA-gene interaction network A
and gene-gene interaction network B as shown in Figure 1.
The second part of the objective function (2) is essentially the
summation of the energy functions of Sk corresponding to
each component Dk in the form of the Ising model [13, 15]:

λ1

∑
i∈V

Si
k + λ2

∑
(a,b)∈Φ

|Sa
k − Sb

k|, (4)

in which the first term regularizes for parsimony to penalize
large support regions and the second term controls the depen-
dency or smoothness between related variables. With this for-
mulation, we search for the most parsimonious (sparse) prin-
cipal components that adaptively capture the structural rela-
tionships among variables.

Finally, there exist ambiguous solutions as the reconstruc-
tion error depends on the matrix product DAT and the opti-
mal solutions ofD andA is not unique. To solve this problem,
we add the constraints (3) to penalize the L2 norm of each
column in A, Ak, which corresponds to principal component
scores for Dk. This avoids degenerated solutions with either
too large or too small values in some Ak during optimization.

3.2. Optimization for MS2PCA
Our proposed formulation contains integer variables S, which
make it a non-convex mixed nonlinear optimization problem.
In our algorithm, we compute A, D and S in an alternative
updating fashion as follows.
1. Update A: With fixed D and S, we require to solve the
following optimization problem to update A:

minA ||X − D̃AT ||2F (5)
s.t. ||Ak||2 ≤ 1 ∀k; (6)

in which D̃ = PS(D) in (1). Similar to [8], we iteratively
update eachAk with fixed {Aj}j 6=k by Block Coordinate De-
scent (BCD).
2. Update D: With A and S , we now solve the following
optimization to update D:

min
D
||X − PS(D)AT ||2F + λ3‖|D||1. (7)

As the first term complicates the optimization by combinato-
rial contributions from D, there is no direct method to solve
this problem. We solve it approximately by rewriting the ob-
jective function as

min
D
{L = ||X̃ −DAT ||2F + λ3||D||1}, (8)

in which X̃ = X + PS⊥(Dt−1)AT , and Dt−1 is from previ-
ous step t − 1. This indeed resembles the formulation of the
LASSO regression problem [16] and we adopt the “shooting
algorithm” [16] to solve this subproblem.

3. Update S: When we fixA andD, we expand the objective
formulation for each column Sk of the support matrix S to get
the following optimization problem:

min
Sk

∑
i

{(Di
k

∑
j

2Xi
jA

j
k)(1− Si

k) + Si
k(λ1

+ (Di
k)2
∑
j

(Aj
k)2 +Di

k

∑
j

2Aj
k

∑
m:m 6=k

Si
mD

i
mA

j
m)}

+ λ2

∑
(a,b)∈Φ

|Sa
k − Sb

k|+ C, (9)

where C is a constant. The energy function (9) is a standard
form of solving the first-order MRF with binary variables,
which can be solved using graph-cut algorithms [13, 17, 18].
At each iteration, we update Sk one by one until S does not
change.

Our MS2PCA algorithm is summarized in Algorithm 1.

Algorithm 1 MRF Structured Sparse PCA
Input: Number of principal componentsK; data matrixX
Initialization: Initialize D, and A as random matrices and
S as full matrix.
repeat

repeat
for k= 1 to K do

Update Ak

end for
until A does not change
repeat

Update D with subgradient-based optimization
Update S with MRF labeling algorithm

until D does not change
until D does not change

4. EXPERIMENTAL RESULTS

We implement our MS2PCA to identify miRNA-gene co-
regulatory modules based on the data set provide by [12],
which has 385 ovarian cancer samples from the TCGA data
portal (http:// canergenome.nih.gov/). After pre-processing,
there are 559 miRNAs and 12,456 genes in the expression
data corresponding to X1 and X2 in Figure 1. For the in-
teraction prior, there are 31,949 gene-gene interaction pairs
by combining the protein-protein interaction data and DNA-
protein interaction data (B in Figure 1) and 243,331 miRNA-
gene interactions from MicroCosm website(A in Figure 1).
To fairly compare MS2PCA and SNMNMF, we set the co-
module number to 50 to reproduce the results for SNMNMF
with all of the parameters set to the best performing values
reported in [12]. 1 For MS2PCA, we set the miRNA-gene

1We note that due to the updated online data sets and miRNA label con-
version, our obtained results from SNMNMF are different from the reported
results in the original paper.
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Table 1. Performance comparison on module identification

Method SNMNMF MS2PCA
Fitting Error 0.4080 0.3653
Time Cost (Sec.) 151000 1977
MiRNA Clusters (q-value < 0.05) 7 10
Gene Func. Sets (q-value < 0.05) 14 22
Key co-modules 2 4

Table 2. Key co-modules from MS2PCA

Module ID GO Term q-value q-value (miRNA)
1 GO:0030593 2.88e-07 2.77e-04
18 GO:0022617 7.77-06 0.0105

GO:0030574 5.57e-05
34 GO:0016339 3.47e-06 0.0095
39 GO:0007389 0.0123 0.0189

interaction pair weight with 50 and gene-gene interaction
with 1. For tuning parameters, we empirically set λ1 = 5,
λ2 = 5, and λ3 = 30 so that 50 co-modules are identified
with 4.8 miRNAs and 77.4 genes on average in each co-
module, similar as SNMNMF (3.8 miRNA and 78 genes).
The fitting accuracy, co-module properties and time cost for
both methods are given in Table 1. As shown in the table, our
method can achieve better fitting accuracy, better co-module
properties and less computation cost as well.

MS2PCA has identified more statistically significantly
enriched co-modules with respect to both miRNA clusters
and Gene Ontology (GO) biological process (BP) terms
(http://www.geneontology.org/). We first evaluate whether
co-modules can shed light on the combinational regulation
from miRNAs by evaluating miRNAs in each identified co-
module based on the genomic distance miRNA clusters ob-
tained from the miRBase database as similarly done in [12].
In total, miRBase provides 216 such miRNA clusters with the
size ranging from 2 to 51 miRNAs. We check each identified
co-module to see whether it is significantly enriched with
miRNAs within this set of miRNA clusters by Fisher’s exact
test with the false discovery rate (FDR) correction [19]. The
co-modules with computed q-values less than 0.05 are consid-
ered as significantly enriched miRNA clusters. Table 1 shows
that MS2PCA can discover more enriched miRNA clusters
than SNMNMF. To further investigate whether the identified
co-modules are enriched with cellular functionalities, we fil-
ter out 4,360 GO BP terms with more than 300 genes and
fewer than 5 genes as in [12], which cover 12,700 genes in
total. With the similar gene set enrichment analysis based
on Fisher’s exact test and FDR correction, MS2PCA again
identifies more enriched gene functional sets than SNMNMF
with q-value threshold at 0.05. Finally, we find co-modules
with both GO-term and miRNA-cluster enrichment q-values
smaller than 0.05 and consider these modules as key regula-
tory co-modules that regulates cell functions. We again see

the same trend that MS2PCA performs better than SNMNMF.
For example, Table 2 lists four key co-modules discovered
by MS2PCA. The identified co-modules 1 (GO:0030593)
and 39 (GO:0007389) are statistically significantly enriched
with corresponding miRNAs and genes that participate in
cell chemotaxis bio-process and BMP signaling pathway,
both of which are associated to ovarian cancer development.
The identified miRNA cluster for co-module 18 includes
miRNAs {mir-143,mir-145} and both of them are related to
ovarian cancer regulation [12]. Further study of these key
co-modules may help better understand the regulatory roles
of corresponding molecules in ovarian caner. Due to the
page limit, we will provide more detailed functional anal-
ysis of identified co-modules in our corresponding journal
manuscript.

In summary, compared to SNMNMF, our MS2PCA can
reach a better fitting accuracy, indicating that the derived
principal components better explain the expression data.
MS2PCA is more flexible as it does not force the non-
negativeness of the expression data as done in SNMNMF so
that it can derive more biologically meaningful co-modules
evaluated by miRBase and GO terms. Furthermore, the
flexibility of MRF structure prior also contributes to better re-
covering of the cellular regulatory structure. In addition, due
to the non-negativeness constraints imposed in SNMNMF,
the adopted multiplicative updating algorithm for optimiza-
tion has a slow convergence rate and thus is computationally
less efficient than MS2PCA.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a novel approach MS2PCA for
recovered structured sparse structure in the observed data by
flexible modeling of arbitrary pair-wise relationships among
variables. The proposed method is implemented to identify
miRNA-gene co-regulatory modules and the preliminary per-
formance comparison with the state-of-the-art method SN-
MNMF [12] has demonstrated that MS2PCA can better ex-
plain the observed data and recovers more meaningful co-
regulatory modules with lower computational cost. With the
flexibly of the MRF structure prior, there are many potential
applications for our MS2PCA. Future work includes testing
MS2PCA model on other biomedical data in addition to -omic
data, for example analyzing functional brain images such as
fMRI. We aim to recover the functional or active regions for
different mental activities. By further analysis and thereafter
better understanding of functional structures, we hope that we
may derive deeper insights into the underlying disease mech-
anisms for better disease prognosis and prevention.
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