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ABSTRACT
Recently, we presented a multiscale approach to anomaly de-

tection in images, combining diffusion maps for dimensionality re-
duction and a nearest-neighbor-based anomaly score in the reduced
dimension. When applying diffusion maps to images, usually a pro-
cess of sampling and out-of-sample extension is used, which has
limitations in regards to anomaly detection. To overcome the limi-
tations, a multiscale approach was proposed, which drives the sam-
pling process to ensure separability of the anomaly from the back-
ground clutter. In this paper, we propose a new anomaly score used
in the diffusion map space, which shows increased performance. We
show that this algorithm enables improved detection when tested on
side-scan sonar images of sea-mines and compare it with competing
algorithms.

Index Terms— anomaly detection, diffusion maps, dimension-
ality reduction, multiscale representation, automated mine detection

1. INTRODUCTION

Anomaly detection is important in many applications in image pro-
cessing, such as automatic target recognition in hyperspectral [1, 2]
or sonar images [3,4], mammographic image analysis [5] and defect
detection, for example in wafer or fabric inspection [6, 7]. A robust
solution to this problem is essential in military applications and au-
tomation of quality assurance processes, as the user will be shown
only suspicious objects, thus saving valuable time.

Anomaly detection in images is challenging due to the large size
of the data set, the presence of noise and high dimensionality of
the data [8]. Also, it is usually difficult to obtain labeled data for
anomaly detection and the data sets tend to be unbalanced due to the
sparseness of anomalies as compared to normal data. This makes un-
supervised methods preferable to supervised ones. There are many
approaches to anomaly detection in images based on statistical mod-
els [2–5], machine learning, saliency based methods [6], sparse rep-
resentations [1], and more. Such approaches usually require model-
ing the data or using training data to learn the background or train a
dictionary.

Recently, we presented a multiscale algorithm for anomaly de-
tection based on dimensionality reduction using diffusion maps [9].
This approach is data-driven, with the separation of the anomaly
from the background arising from the intrinsic geometry of the im-
age, revealed through the use of diffusion maps. The algorithm is
unsupervised and requires no prior knowledge regarding the appear-
ance of the anomaly or the background, and no use is made of train-
ing data or reference images. The anomaly score is based on local

This research was supported by Robert H. Hillman Foundation for
Global Security - Collaboration Technion and University Northeastern, and
by the Israel Science Foundation (grant no. 1130/11).

density approximation of the pixels in the reduced dimensionality. It
is calculated using the noise-robust diffusion distance, which enables
the algorithm to handle very noisy images. Sampling and out-of-
sample extension are common practice in applying diffusion maps
to images due to the large size of the data set [10, 11]. We show
in [9] that this process can limit the success of the dimensionality re-
duction in revealing the presence of anomalies in the data. To over-
come these limitations, a multiscale approach is used, which drives
the sampling process to ensure separability of the anomaly from the
background clutter.

In this paper, we propose a new anomaly detection score in-
spired by the saliency map proposed by Goferman, Zelnik-Manor
and Tal [12]. The problems of anomaly detection and saliency in
images are closely related, where an anomaly can be viewed as a
salient object in the image. However, while saliency is typically im-
portant in natural images, anomaly detection is usually performed
in images which are not natural: multispectral, sonar, microscopy,
medical, etc. These images tend to be noisy. Therefore, a feature
space which is robust to noise is more appropriate in this context.
We adapt the dissimilarity measure used in [12] to the diffusion map
feature space used in our algorithm. This new anomaly score has
improved performance, requires less parameters and is better at sup-
pressing background regions which are similar to each other yet spa-
tially distant.

The paper is organized as follows. Sec. 2 reviews the diffusion
map framework for dimensionality reduction and Sec. 3 describes
out-of-sample extension methods and their limitations in anomaly
detection. In Sec. 4, the proposed multiscale algorithm is presented.
Finally, Sec. 5 demonstrates the application of the proposed algo-
rithm to automatic target detection in real images of side-scan sonar
where the anomalies are sea-mines.

2. DIFFUSION MAPS

Real world data is usually represented with features of high dimen-
sionality, yet can be shown to lie on low-dimensional manifolds.
Finding a low-dimensional representation of the data is necessary
to efficiently handle it and the representation usually reveals mean-
ingful structures within the data. In recent years, a large number
of nonlinear techniques for dimensionality reduction have been pro-
posed [13–16]. Some of these methods are spectral methods, based
on the eigenvectors of adjacency matrices of graphs on the data [15,
16]. These methods take into account the geometry of the data set
and the representation they yield preserves local neighborhood in-
formation. Diffusion maps [16] is one such technique, based on the
construction of the graph Laplacian of the data set.

Let Γ = {x1, .., xn} be a high-dimensional set of n data points.
A weighted graph is constructed with the data points as nodes and the

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 2842



weights of the edges connecting two node is a measure of the similar-
ity between the two data points. The affinity matrix W = w(xi, xj),
xi, xj ∈ Γ is required to be symmetric and non-negative. A com-
mon choice is an RBF kernelw(xi, xj) = exp

{
−‖xi − xj‖2/σ2

}
,

where σ > 0 is a scale parameter. Then, a random walk is created
on the data set by normalizing the kernel:

P = D−1W, (1)

where D(i, i) =
∑

j∈Γ w(xi, xj). The row-stochastic matrix P

satisfies p(xi, xj) ≥ 0 and
∑

j∈Γ p(xi, xj) = 1 and can be viewed
as the transition matrix of a Markov chain on the data set Γ. The
spectral decomposition of P yields that t steps of the Markov chain
can be presented as

pt(xi, xj) =
∑
l≥0

λt
lψl(xi)φl(xj), (2)

where φl and ψl are the biorthogonal left and right eigenvectors,
respectively, and |λ0| ≥ |λ1| ≥ ... ≥ 0 are the sequence of eigen-
values.

A diffusion distance dDM (xi, xj ; t) between two points xi, xj ∈
Γ is defined by

dDM (xi, xj ; t) =
∑
xk∈Γ

(
pt(xi, xk))− pt(xj , xk)

)2
φ0(xk)

. (3)

This measures the similarity of two points according to the evolution
of their probability distributions in the Markov chain. This metric is
robust to noise, since the distance between two points depends on
all possible paths of length t between the points. Using the spectral
decomposition given in (2), the diffusion distance can be calculated
using the eigendecomposition of P by

dDM (xi, xj ; t) =
∑
l≥1

λ2t
l (ψl(xi)− ψl(xj))

2. (4)

Due to the spectrum decay, the diffusion distance can be approx-
imated using only the first ` eigenvectors. Thus, the computa-
tional complexity of the diffusion distance is low given the eigen-
decomposition of P.

Equation (4) implies that a mapping can be defined between the
original space and the eigenvectors ψl, defining a new set of coordi-
nates for the dataset Γ, such that the diffusion distance is equal to the
Euclidean distance in this new embedding. Retaining only the first `
eigenvectors, the diffusion map is defined by

Ψt : xi →
(
λt

1ψ1(xi), λ
t
2ψ2(xi), ..., λ

t
`ψ`(xi)

)T
. (5)

Note that ψ0 is not used in the embedding because it is a constant
vector. The mapping Ψt embeds the data set Γ into the Euclidean
space R`. The spectrum decay of the eigenvalues is the reason why
dimensionality reduction can be achieved. The dimension of the new
representation depends only on the random walk and is independent
of the length of the feature vector used in the original representation
of the data.

The scale parameter σ is of great significance in constructing
the weighted graph. Setting σ to be too small results in a discon-
nected graph, where many points are connected only to themselves.
Setting σ to be too large results in all the points of the graph being
connected. This is especially undesirable in the setting of anomaly
detection, where setting σ to be too large will connect the anomalies
with the cluttered background. We expect the anomaly to be in a low

density neighborhood and the background to belong to a high den-
sity neighborhood. Therefore a local scale factor is beneficial, such
as the one proposed by Zelnik-Manor and Perona [17]. The scale
σ is calculated for each point xi based on the local statistics of its
neighborhood:

σi = ‖xi − xK‖2 (6)

where xK is theK-th nearest neighbor. The similarity kernel is then
calculated as w(xi, xj) = exp

{
−‖xi − xj‖2/σiσj

}
.

3. FUNCTION EXTENSION

The size of the data set for images is very large. Therefore, it can be
computationally inefficient to construct a diffusion map using all the
pixels in the image, especially for high-resolution images. Instead,
it is a common approach [10, 11] to construct the diffusion map for
an image using a subset of random samples, Γ ⊆ Γ, and then the
diffusion map coordinates Ψ are extended to the set of all patches in
the image Γ using an out-of-sample extension method.

The Nyström extension method is a common method for the
extension of functions from a given training set to new samples.
Different methods have been proposed to approximate the Nyström
extension method [18] or improve upon it, such as the Geometric
Harmonics method [19]. Recently, a new algorithm was presented
for out-of-sample function extension using the multiscale Laplacian
pyramid [20]. At each iteration, the Laplacian pyramid algorithm
constructs a coarse approximation of a function f for a given scale.
Then, the difference between f and the coarse approximation is used
as input for the next iteration. The difference is approximated at
each level using a Gaussian kernel with increasingly finer scales.
A smooth function can be extended using a coarse scale, i.e. will
not require many levels of the pyramid. An oscillating function on
the other hand will require finer levels of the pyramid to enable an
accurate extension. For more details, see [20]. We perform this ex-
tension method for each diffusion coordinate f = Ψl, l ∈ {1, ..., `}
separately. The number of levels in the pyramid extension can differ
between coordinates, dependent on their smoothness over Γ.

As discussed in [9], out-of-sample extension methods can cause
anomaly detection to fail, depending on the set of random samples
Γ ⊆ Γ used to construct the diffusion map. In a case where there
are no anomalies in Γ and it consists only of examples from a single
n-dimensional cluster (the background), then the eigenvectors cap-
ture only the relaxation process within this cluster [21]. In such a
case, the diffusion map will not capture the difference between the
anomaly and the background, and the out-of-sample extension of the
diffusion map to the pixels in the anomaly region will not succeed in
assigning them new coordinates which separate them from the back-
ground. Anomaly detection when the anomaly is not included in the
initial diffusion map requires extrapolation of the diffusion coordi-
nates and not interpolation. However it is not clear how to perform
extrapolation on the low-dimensional manifold, if at all possible. To
overcome this limitation of the out-of-sample extension, we propose
a multiscale method which drives the sampling process and ensures
the inclusion of samples from the anomaly region in Γ.

4. MULTISCALE ANOMALY DETECTION

To overcome the limitations of random sampling, we propose a mul-
tiscale approach. Assume that the anomalies in the image are larger
than a single pixel. Therefore, they can be detected at several resolu-
tions of the image. At a lower resolution, it is computationally pos-
sible to sample a larger percentage of the image for the construction
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Fig. 1. Flowchart of the multiscale algorithm.

of the diffusion map. Thus, detecting an anomaly at a lower resolu-
tion is less likely to fail due to sampling. Since our method performs
anomaly detection at different resolutions of the image, even if the
anomaly is missed on a coarse level due to its size, it can still be
detected on the following finer levels. In addition, it is possible to
lower the threshold for anomaly detection on the coarser levels, since
this will not harm the false alarm rate as a decision is only reached
at the full-scale level. Thus we are able to detect anomalies on the
higher levels, even at the cost of detecting more false alarms, since
these false alarms will be removed at the final level.

Our multiscale approach is based on constructing a Gaussian
pyramid [22] representation of the image, yielding {Gl}Ll=0, where
G0 is the original image and GL is the coarsest resolution. Starting
with GL, a subset ΓL of random pixels is sampled from the image.
Since the image at this level is at very low resolution, the subset can
include all pixels, depending on memory constraints. Using the dif-
fusion coordinates, an anomaly score SL is calculated for all pixels
and then a threshold τl on the anomaly score determines suspicious
pixels. Proceeding to the image GL−1, pixels which correspond to
the suspicious pixels found in GL are included in ΓL−1. The rest
of the pixels in ΓL−1 are sampled randomly from the image. The
threshold τl used at the output of each level is chosen to be the 95th

percentile of the anomaly score for that level. If the image does not
hold an anomaly this will result in random samples with the highest
anomaly scores. If the image holds an anomaly, the anomaly will
have a high score compared to the rest of the image and it will be
sampled more densely in the next level.

The process of sampling, dimensionality reduction and anomaly
detection continues from level to level, with each previous level pro-
viding prior information on which samples of the data set will be
used in Γl to construct the diffusion map. At the full-scale level G0,
the anomaly score for each pixel determines the existence of anoma-
lies in the image. We use a hard threshold τ on S0 and then smooth
the resulting image. Anomalies have a high score, close to 1. Fig-
ure 1 presents a flowchart of the algorithm. This approach greatly
increases the detection rate of the diffusion-based anomaly detector,
compared with a single scale approach.

At each level, the affinity matrix is calculated for the subset Γl.
In order to reduce computation time and memory requirements, the
matrix is calculated using k-nearest-neighbors, i.e. patch xi is con-
nected to patch xj if xi is among the k-nearest-neighbors of xj or
vice versa. Otherwise w(xi, xj) = 0, resulting in a sparse matrix as
in [15]. We set k = 16.

4.1. Saliency-based Anomaly Score

In our previous paper [9], we used an anomaly score based on a
nearest-neighbor approach. The assumption was that the anomaly is

in a low density neighborhood in the diffusion map space whereas
background pixels belong to dense local neighborhoods in the diffu-
sion map space. Taking advantage of the spatial nature of the data
set, the pixel grid, we calculated an affinity measure between each
pixel and the pixels in the window surrounding it, using the diffu-
sion distance. This affinity was used to calculate an approximation
of the local density of each pixel in the diffusion map space, given
its spatial neighborhood. Anomaly pixels were dissimilar to their
spatial neighborhoods, resulting in low local density, whereas back-
ground pixels were similar to their spatial neighborhoods, resulting
in high density. Since we assume the anomaly to be non-pointwise,
a mask was used in order to remove the inner region of the window
surrounding the pixel.

In this paper we propose using a different measure to calculate
the anomaly score. In [12], Goferman et al. defined a local-global
dissimilarity measure between two patches in an image:

d(pi, pj) =
dcolor(pi, pj)

1 + c · dposition(pi, pj)
(7)

with c = 3. The distance dcolor is the Euclidean distance between
vectorized patches in CIE L*a*b color space normalized to the range
[0, 1]. The distance dposition is the Euclidean distance between the im-
age positions of patches pi and pj , normalized by the larger image
dimension. This dissimilarity measure is proportional to the differ-
ence in appearance and inverse proportional to the positional dis-
tance. It realizes the authors’ observations that background pixels
are similar to both near and far pixels, whereas salient patches are
grouped together, therefore similar only to nearby patches. In ad-
dition, in order to evaluate the distinctness of a patch it is sufficient
to consider its K most similar patches {qk}Kk=1 (K = 64), and not
calculate its dissimilarity to all image patches. The saliency value of
a pixel was given by

S(i) = 1− exp

{
− 1

K

K∑
k=1

d(pi, qk)

}
(8)

These observations holds for anomaly detection as well. How-
ever, instead of using dcolor, we propose using the diffusion distance
between patches. The diffusion distance is preferable to using the
color distance between patches as it is robust to noise. Also, the em-
bedding it yields better separates the anomaly from the background,
compared to using image patches. This requires normalizing the dif-
fusion distance such that most values are spread out in the range
[0, 1] and therefore comparable to dposition. Since we already calcu-
late the K most similar data points for each point in the image in
terms of the diffusion distance, we can use the statistics on these dis-
tances for the normalization. Empirically, dividing the distances by
the standard deviation of the distances to the Kth neighbor gave us
values in the desired range: σK = std

i∈Γ
{dDM(pi, qK)}. Finally, the

anomaly score is given by

S(i)DM = 1− exp

{
− 1

K

K∑
k=1

dDM(pi, pj)/2σK

1 + c · dposition(pi, pj)

}
. (9)

The advantages of using this measure over the one given in [9]
are:

1. This grade better suppresses background regions which have
similar diffusion coordinates, yet are spatially distant from
one another in the image. Using the previous score, a tested
pixel was compared to the pixels within a limited spatial
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region surrounding it. So if there were background regions
which are similar to one other, yet different from their close
spatial neighborhood, they could receive a high anomaly
score. Now since each pixel is compared to its most similar
neighbors in the diffusion space regardless of spatial proxim-
ity, these regions receive a low anomaly score. Anomalous
pixels, unlike these regions, lie close together yet are different
from all other regions, therefore receive a high score.

2. No prior knowledge is required regarding the anomaly size,
while in our previous method the size of the anomaly was
used to mask the close spatial neighbors of a tested pixel,
since they were not used in calculating the anomaly score.

3. The previous score requires more fine-tuning of different pa-
rameters (the size of the spatial neighborhood, the size of the
mask, the scale used in the diffusion-based affinity measure)
and special treatment of the boundary pixels of the image.

In Sec. 5 the previous score is compared to the new score.

5. EXPERIMENTAL RESULTS

We demonstrate the proposed algorithm on real sea-mine side-scan
sonar images, achieving a high detection rate with a low rate of false-
alarms. We treat the sea-mines in the images as anomalies and the
reflections from the seabed are considered normal background clut-
ter. Automatic detection of sea mines in side-scan sonar imagery is
a challenging task due to the high variability in the appearance of
the target and sea-bed reverberations (background clutter). Objects
in side-scan sonar appear as a strong bright region (highlight) along-
side a dark region (shadow), which is due to the object blocking the
sonar waves from reaching the seabed.

Algorithms proposed for detection of mines in side-scan sonar
include MRF models for modeling the background [23, 24], a 2-
D multiscale GMRF with matched subspace detector (MSD) [4],
a multidimensional GARCH model with MSD [3], non-linear
matched filters [25], etc. Most algorithms for detection of sea-
mines in side-scan sonar make use of a training set, based on real
images and/or synthetic ones [24, 26]. In [3], a few examples of
sea-mines are used for creating the anomaly subspace for the MSD.
Our diffusion-based approach does not require a training set and
makes no assumptions regarding the appearance of the mine or its
shadow in the image.

We evaluated our algorithm on a set of 27 side-scan sonar images
of size 200x200 pixels. The parameters of the multiscale detector are
given in Table 1, for a Gaussian pyramid of L = 3 levels . Note that
the size of the images enables denser sampling of the image than
what we used. We intentionally use a small percentage of the pixels
in the image to demonstrate that this framework is applicable also
for larger images.

Detections are found by applying a threshold to the anomaly
score image, resulting in a binary image. A detection is a connected
component (CC) in the binary image. A CC containing the sea-mine
is a true positive (TP) and any other CCs are false alarms (FA). The
size of the CC can be used to reject noisy detections, where small
CCs are discarded. We compare two thresholds on the area of the
CC: 10 pixels and 20 pixels. Using a larger threshold on the size
rejects more FAs, but can also result in a decreased amount of TPs,
for small sized anomalies. We compared the percentage of TPs for
each method for a given FA rate. Results are given in Table 2.

We compare our proposed algorithm (MS-CAS) with three other
methods:

Table 1. Parameters Used in Multiscale Detector
Pyramid

Level
Patch
size

Embedding
Dimension

Percentage of
pixels in subset

0 8x8 6 0.10
1 4x4 6 0.33
2 2x2 3 0.5

Table 2. Percentage of True Positives for Given Number of False
Alarms

size=10 size=20
# of FA 8 4 0 8 4 0

MS 93% 93% 89% 93% 89% 89%
MS-CAS 100% 96% 93% 100% 96% 96%
SS-CAS 89% 89% 44% 89% 89% 37%

CAS 81% 67% 41% 78% 63% 30%

• MS: The multiscale method we proposed in [9], using the
local density based score.

• SS-CAS: A single-scale method using the full-size image.
The parameters are the same as those in Table 1 for pyra-
mid level 0, however 20% of the image is randomly sampled
to construct the diffusion map. The anomaly score is the one
described in Sec. 4.1.

• CAS: The method proposed in [12]. Anomaly detection is
performed by applying a threshold to the saliency map.

Our new multiscale approach MS-CAS has the highest TP rate.
The performance of our new algorithm is better than our previous
method MS, with an improvement of 3%-17% for a given number
of FAs. Also, as in our previous work, using a multiscale approach
results in increased performance compared to using a single scale.
The poor performance of the single-scale detector SS-CAS for low
FA rate reveals the limitations of sampling the image compared with
the multiscale detectors which have a significantly better detection
rate. This is due to the propagation of information from level to
level. Our method also outperforms [12]. The reason for this is that
the Context-Aware Saliency method uses a feature space which is
suitable for natural images. The images we tested are side-scan sonar
and are very noisy. Some of the noise patterns in the background are
given a high saliency score. Using the diffusion map as a feature
space suppresses the noise, due to the robustness of the diffusion
distance, and the noisy patterns are clustered with the background
and not detected as anomalies. Our code is available at [27].

6. CONCLUSION

We have presented an anomaly detection algorithm using diffusion
maps, which is a state-of-the-art method for manifold learning and
dimensionality reduction. To improve the detection process and en-
sure that the normal pixels and the anomaly regions are separable
in the lower dimensional embedding, we implemented a multiscale
framework. This multiscale approach overcomes the possible limi-
tations in using diffusion maps with out-of-sample extension algo-
rithms. A new anomaly score is proposed, combining a saliency
measure with the noise-robust diffusion distance. Our algorithm
performed successfully in the challenging task of automatic target
detection in side-scan sonar images. Our method achieved superior
results when compared to competing methods, both single scale and
multiscale.
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