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ABSTRACT

A computing method of double linear correlation is proposed
in order to estimate the location in which the part of an image
matches another image even if one of the images is mirrored
across the vertical, horizontal, or both axes. 1-D double linear
correlation (DLC) is extended to 2-D DLC. The reduction of
the number of zero-padding is considered. The computational
complexity of the proposed method is lower than that of an
FFT approach by more than 50% the number of operations
on real numbers.

Index Terms— Discrete cosine transform, linear correla-
tion, image matching, mirror image.

1. INTRODUCTION

Correlation is a fundamental tool and is widely used for
image matching. Discrete cosine transform sign phase cor-
relation (DCT-SPC) is a kind of limited correlation based
on the phase difference between two sequences that are ex-
tended symmetrically [1][2]. DCT-SPC is calculated using
DCT signs, which lowers the computational load, and have
an affinity with coded images. However, DCT-SPC function
is affected by convolution terms due to its symmetry property.

A computational method of linear convolution using
DCTs for linear phase filters is proposed [3]. It was ex-
tended to nonlinear phase filters [4][5], which means that
the computing method for linear convolution can be used for
linear correlation. The author developed a method obtain-
ing linear convolution and linear correlation simultaneously
using DCTs and used the method for forward and reverse
matching [6].

In the present paper, we propose a computing method of
double linear correlation (DLC) for the new concept of a mir-
ror image matching that is to determine whether an image
matches another image even if one of the image is mirrored
across the vertical, horizontal, or both axes. The mirror pat-
tern and its location can be estimated by the proposed method
with low computational load. Two properties of DLC and
DCT-SPC in combination enables to lower the computational
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load on DLC and to remove the effect of convolutions terms
on DCT-SPC.

2. PRELIMINARIES

Let x(n) and h(n) be a sequence of the length M and L,
respectively.

2.1. Symmetrically extended sequence (SES) and the re-
lation between DCT type 2 (DCT-2) and DFT

Let f̂2N (n) of length 2N be an SES of fN (n) of length N ,
i.e.,

f̂2N (n) = f2N (n) + f2N (−n− 1) (1)

where

f2N (n) =

{
fN (n), 0 ≤ n ≤ N − 1
0, N ≤ n ≤ 2N − 1

. (2)

The relation between DCT-2 and DFT is given as for k =
0, 1, . . . , N − 1

F̂ (k) = (1/Ck)FC(k)W
−k/2
2N (3)

where F̂ (k) is 2N -point DFT coefficient of f̂2N (n), FC(k)
of fN (n) is N -point DCT-2 coefficients of fN (n), and WN =
exp(−j2π/N) [7]. The DCT-2 coefficients are given as

FC(k) = 2Ck

N−1∑

n=0

fN (n) cos

(
π(n+ 1/2)k

N

)
(4)

Ck =

{
1/
√
2, k = 0 or N

1, otherwise . (5)

2.2. Circular convolution between SESs using DCTs

Circular convolution between SESs is calculated using DCTs
without making SESs.

The circular convolution, ŷ2N (n), between x̂2N (n) and
ĥ2N (n) is calculated by

ŷ2N (n− 1) =
1

N

N−1∑

k=0

C2
kXC(k)HC(k) cos

(
πnk

N

)
(6)

where XC(k) and HC(k) are the DCT-2 coefficients of
xN (n) and hN (n), respectively, according to (4).
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2.3. DCT sign phase correlation (DCT-SPC)

The DCT sign is defined in terms of FC(k) and the absolute
value, |FC(k)|, as

σF (k) = FC(k)/|FC(k)|. (7)

When |FC(k)| is zero, σF (k) is replaced by zero. From the
relation between DCT signs and DFT phase term, i.e.,

σF (k) = W k/2
2N φ̂F (k) (8)

where ˆφ(k) = F̂ (k)/|F̂ (k)|, the DCT sign phase correlation,
r(n), between xN (n) and hN (n) is given as

r(n) =
1

N

N−1∑

k=0

C2
kσX(k)σH(k) cos

(
πnk

N

)
(9)

where σX(k) and σH(k) are DCT signs of XC(k) and
HC(k), respectively, according to (7). The translational
displacement is expressed by the location n of the maximum
value of r(n).

3. DOUBLE LINEAR CORRELATION

3.1. Linear convolution between SESs

Let xN (n) and hN (n) be

xN (n) =






0, 0 ≤ n ≤ z1 − 1
x(n− z1), z1 ≤ n ≤ z1 +M − 1
0, z1 +M ≤ n ≤ N − 1

(10)

hN (n) =






0, 0 ≤ n ≤ z2 − 1
h(n− z2), z2 ≤ n ≤ z2 + L− 1
0, z2 + L ≤ n ≤ N − 1

(11)

where 0 ≤ z1 < N and 0 ≤ z2 < N , (z1, z2 ∈ Z) are
the number of zeros to be padded before x(n) and h(n), re-
spectively, and let x̂2N (n) and ĥ2N (n) be SESs of xN (n) and
hN (n), respectively, according to (1).

The linear convolution, ŷ(n) = x̂2N (n) ∗ ĥ2N (n) can be
expressed by the superposition of four linear convolutions as

ŷ(n) = y(1)(n) + y(2)(n) + y(3)(n) + y(4)(n) (12)

where

y(1)(n)=

{
x(n) ∗ h(n), l1 ≤ n ≤ l1 + P − 1
0, otherwise (13)

y(2)(n)=

{
x(n)∗h(−n− 1), l2 ≤ n ≤ l2 +P−1
0, otherwise (14)

y(3)(n)=

{
x(−n− 1)∗h(n), l3 ≤ n ≤ l3+P−1
0, otherwise (15)

y(4)(n)=

{
x(−n−1) ∗ h(−n− 1), l4≤n≤ l4+P−1
0, otherwise

(16)

and

l1 = z1 + z2, (17)
l2 = z1 + 2N − L− z2, (18)
l3 = 2N −M − z1 + z2, (19)
l4 = 2N −M − z1 + 2N − L− z2. (20)

That is, y(2)(n) is the linear correlation between x(n) and
h(n) and y(1)(n) is the linear correlation between x(n) and
h(n) in reverse order. In addition, they are related to as

y(1)(n) = y(4)(−n− 1), (21)

y(2)(n) = y(3)(−n− 1). (22)

3.2. 2-D double linear correlation (2-D DLC)

We consider the linear convolution between an M×M image,
x(n1, n2), and an L× L image, h(n1, n2).

2N × 2N images x2N (n1, n2) and h2N (n1, n2) are de-
fined as

x2N (n1, n2) =

{
x(n1 − z1, n2 − z1), Rx

0, otherwise (23)

h2N (n1, n2) =

{
h(n1 − z2, n2 − z2), Rh

0, otherwise (24)

where z1 and z2 are the number of zeros that are padded be-
fore images x(n1, n2) and h(n1, n2), respectively, and

Rx =

{
z1 ≤ n1 ≤ z1 +M − 1
z1 ≤ n2 ≤ z1 +M − 1

, (25)

Rh =

{
z2 ≤ n1 ≤ z2 + L− 1
z2 ≤ n2 ≤ z2 + L− 1

. (26)

The SESs x̂2N (n1, n2) and ĥ2N (n1, n2) are expressed as

x̂2N (n1, n2) = x2N (n1, n2) + x2N,2N (−n1, n2)

+x2N (n1,−n2) + x2N (−n1,−n2) (27)

ĥ2N (n1, n2) = h2N (n1, n2) + h2N,2N (−n1, n2)

+h2N (n1,−n2) + h2N (−n1,−n2) (28)

respectively.
The linear convolution, ŷ(n1, n2) = x̂2N (n1, n2) ∗

ĥ2N (n1, n2) can be expressed by the superposition of 16
linear convolutions, each of those linear convolutions is de-
noted as

y(i,j)(n1, n2) =

{
y(i)(n),with respect to n1

y(j)(n),with respect to n2
(29)

according to (13) through (16). For example, y(2,1)(n1, n2)
includes x(n1, n2) ∗ h(−n1 − 1, n2) over ( l2 ≤ n1 ≤ l2 +
P − 1 and l1 ≤ n2 ≤ l2 + P − 1).
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Fig. 1. Location of 16 linear convolutions in linear convolu-
tion between SESs. The region in white denotes the region
of each linear convolution where only the superscript i, j of
y(i,j)(n1, n2) is described and the region in gray denotes zero
values.
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Fig. 2. Location of 16 linear convolutions in the circu-
lar convolution between SESs. Only the superscript i, j of
y(i,j)(n1, n2) is described.

From (13) through (16), the condition for which the 16
linear convolutions are isolated is given as

z1 ≥ z2 + L, (30)
z2 > (M − 2)/2, (31)
N ≥ z1 + z2 + P + 1. (32)

Under the condition, the 16 linear convolutions are located
without being superimposed as illustrated in Fig.1.

In the circular convolution between SESs, the output sam-
ples over 2N × 2N are wrapped around, which changes the
location of the 16 linear convolutions as illustrated in Fig. 2.
Note that the left-upper quarter of ŷ2N (n1, n2) can be ob-
tained using DCTs according to (6).

2,2 2,1

1,2 1,1

L-1

M-L+1

L-1

M+L-1

2M

Fig. 3. Limited 2-D DLC. The part in white expresses those
parts of the convolution that are computed without the zero-
padded edges. Only the superscript i, j of y(i,j)(n1, n2) is
described.

3.3. Limited double linear correlation

If M > L, the upper-left location of h(n1, n2) is limited over
(0, 0) through (M −L,M −L) in x(n1, n2). The number of
zero-padding can be reduced by superimposing those parts of
the convolution that are computed with the zero-padded edges
as illustrated in Fig. 3. The condition for which those parts
are superimposed is given from (13) through (16) as

z1 ≥ M/2, (33)
z2 ≥ (M − L)/2, (34)
N ≥ 2M. (35)

As a result, the number of zero-padding for DLC is reduced
from 2(M+L−1) to 2M , which is effective especially when
L is significantly less than M .

DCT-SPC can be applied to DLC straightforwardly ac-
cording to (9), which reduces the computational load on DLC
and removes the effect of the convolution terms on DCT-SPC.

4. SIMULATIONS

4.1. Mirror image matching

We performed the proposed method for mirror image match-
ing between an M ×M image and an L× L image.

Figure 4(a) shows the result when one of the images mir-
rored across the horizontal axis and Fig. 4(b) shows the re-
sult when one of the images mirrored across the vertical axis
where M = 160 and L = 80. A peak appears in the region
that expresses mirror pattern, and the location in M ×M im-
age was estimated correctly from the location of the peak.

4.2. Computational complexity

We evaluated the computational complexity comparing with

a) FFT approach ( the circular correlation between h(n1, n2)
and the mirror image that is generated from x(n1, n2) )

b) 2-D DLC
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Table 1. Computational complexity for mirror image matching between an M ×M image and an L× L image.
a) FFT approach b) 2-D DLC c) 2-D DLC using DCT signs

(on complex numbers) (on real numbers) (on real numbers)
transform mu. 2×Q2 log2 Q 2× (N2 log2 N + 2N) 2× (N2 log2 N + 2N)

ad. 2× 2Q2 log2 Q 2× (3N2 log2 N − 2N2 + 2N) 2× (3N2 log2 N − 2N2 + 2N)
product mu. Q2 N2 -
inverse mu. 1×Q2 log2 Q 1× (N2 log2 N + 2N) 1

transform ad. 1× 2Q2 log2 Q 1× (3N2 log2 N − 2N2 + 2N) N2 − 1
Q = 2M + L− 1 and N = 2(M + L− 1) for full version, and Q = 2M and N = 2M for limited version.

(a) Mirrored across the horizontal axis

(b) Mirrored across the vertical axis

Fig. 4. 2-D DLC using DCT signs. A peak appears in the
region that expresses the mirror pattern.

c) 2-D DLC using DCT signs (DCT-SPC)

Table 1 summarizes the computational complexity for a)
to c). 2-D FFT and Fast 2-D DCT use row/column approaches
with 1-D FFT [8] and Fast 1-D DCT [9][10] algorithms, re-
spectively. Figures 5(a) and 5(b) show the computational
complexity on real numbers for a) to c) where M = 8L in
which one multiplication calculation on complex numbers is
converted to three multiplication calculations and three ad-
dition calculations on real numbers by Nakayama’s method
[11], and one addition calculation on complex numbers is
converted to two addition calculations on real numbers. We
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Fig. 5. Computational complexity on real numbers for mirror
image matching where M = 8L.

can confirm that the computational complexity of 2-D DLC
using DCT signs limited version is less than 25 % of that of
the FFT approach limited version on the number of multi-
plication calculations and is roughly 25% of that of the FFT
approach on the number of addition calculations.

5. CONCLUSION

Low computational load linear correlation method was pro-
posed for mirror image matching. This was achieved by
combining DLC and DCT-SPC and by obtaining only those
parts of the linear convolution that are computed without
zero-padded edges.
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