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ABSTRACT
The retargeting pyramid (RP) is a multiscale image pyramid using
content-aware image resizing. In the previous implementation of the
RP, a two-step interpolation is adopted to obtain the desired resolu-
tion. However, this interpolation leads to performance loss for image
processing. In this paper, we improve the performance of the RP by
replacing the two-step interpolation with a single interpolation using
a matrix representation of the bilateral filter and Tikhonov regular-
ization.

Index Terms— Retargeting, content-aware image resizing, de-
noising, retargeting pyramid, Laplacian pyramid, bilateral filter,
Tikhonov regularization.

1. INTRODUCTION

Multiscale (MS) decomposition of images, e.g., by using wavelet
transforms [1], [2], is known as an effective method for analyzing
image signals. We can use it in various image processing appli-
cations, such as compression, denoising, enhancement, and texture
retrieval. As a method for implementing MS decomposition, Lapla-
cian pyramid (LP) method [3] is widely used. The LP performs sepa-
rable lowpass filterings along both horizontal and vertical directions,
followed by the explicit downsampling.

Many images contain diagonal edges as well as horizontal /ver-
tical ones. Therefore, multidirection (MD) decomposition is also
beneficial as well as MS decomposition. Without being exhaustive,
contourlet [4–7], directionlet [8, 9], and curvelet [10] are key meth-
ods for MSMD decomposition based on the traditional MS decom-
position. In particular, the contourlet transforms (CTs) are closely
related to the LP, and achieve the MSMD decomposition by combin-
ing the LP and directional filter banks (DFBs) [11–13].

The retargeting pyramid (RP) [14, 15] has been proposed as an
alternative to the LP. It achieves MS decomposition considering the
importance of content in an image. Furthermore, it can be incor-
porated with DFBs to realze content-aware MSMD decomposition.
The RP replaces low-pass filtering and downsampling in the LP with
image retargeting, which is also known as content-aware image re-
sizing [17–27]. Roughly speaking, the explicit low-pass filtering and
downsampling approach in the LP is replaced with implicit down-
sampling and filtering by utilizing image retargeting. However, im-
age retargeting in the RP requires a two-step interpolation: It leads
to performance loss for image processing.
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This paper proposes a novel decimation operator for the RP us-
ing the bilateral filter (BF) [28]. It replaces the two-step interpolation
used in the RP with a single interpolation. In order to further improve
the performance of the RP, we use Tikhonov regularization [29] to
design the decimation matrix. The improved RP (iRP) using our pro-
posed operator outperforms CTs with conventional pyramid struc-
tures in our experiments.

The remaining of this paper is constructed as follows. Section 2
gives a review of the RP. The iRP is introduced in Section 3. Sec-
tion 4 presents the experimental results for some image processing
applications. Finally, Section 5 concludes this paper.

2. REVIEW

In this section, we briefly review the previous structure of the RP.

2.1. Retargeting Pyramid

Considering an H0 × W0 image X, let x(0) ∈ RH0W0 be the vec-
torized version of X. The significances (saliencies) of an image is
transformed by retargeting. For the K-level decomposition, retarget-
ing is performed by Ksig levels, and its output is further transformed
by using the LP for Kfreq = K−Ksig levels. The k-th level outputs
x(k+1) and x̂(k) in the RP are represented as

x(k+1) =

{
R(k)x(k) 0 ≤ k ≤ Ksig − 1

L(k)x(k) Ksig ≤ k ≤ K − 1
, (1)

x̂(k) =

{
x(k) −R∗(k)x(k+1) 0 ≤ k ≤ Ksig − 1

H(k)x(k) Ksig ≤ k ≤ K − 1
, (2)

where x(k+1) indicates a low-pass component, x̂(k) is a high-pass
component, and R is the retargeting operator described in Sec. 2.2.
L and H are the low-pass and high-pass filters, respectively, creating
a perfect reconstruction filter bank. R contains low-pass filtering
and downsampling implicitly, and R∗ is the pseudo inverse operator
of R. Note that R∗R ̸= I where I is an identity matrix. In the
previous RP [14,15], the structure is designed as shown in Fig. 1, and
the retargeting operator R consists of two independent operations:

R = ΛΦ, (3)

where Λ is uniform bicubic scaling, and Φ is the warping operation
which deforms original pixels while keeping the original size of k-th
level input image.
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Fig. 1. Retargeting Pyramid.

Fig. 2. Improved Retargeting Pyramid.

2.2. Retargeting in the RP

The algorithm of image retargeting used in the RP is similar to a
mesh warping method described in [20]. Let p be the original pixel
position p ∈ R2 | (0, 0) ≤ p ≤ (H0 − 1,W0 − 1). The pixel
position after mesh deformation is defined as

p′(i) = p(i) + d(i), (4)

where i is a pixel index and d is a displacement vector of the mesh.
To obtain the optimized mesh, significant regions are extracted by
using a significance map. In the RP, the significance is represented
as a weight in a similar way in [20]:

W =
1

2

(
1

max(Wα)
Wα +Wβ

)
, (5)

where Wα = ∥∇X∥2 is the l2-norm of the gradient, and Wβ is
a saliency map which is given in [16]. In order to optimize a mesh
based on (5), we consider the following cost function:

E(p′, sf , lij) = Em(p′) + γ{Eu(p
′, sf ) + El(p

′, lij)}, (6)

where γ is the weight for El, sf is the scale factor of a quad face
between p and p′, and lij is the length ratio of the quad edges. In
(6), Em is used to stretch meshes based on the value of W, Eu keeps
the shapes of original mesh faces, and El prevents edges from being
bent among vertices (pixels). The optimal mesh can be obtained by
updating p′ iteratively.

3. DIRECT DECIMATION FOR IMPROVED RP

A novel decimation operator for the RP is proposed in this section.
The flow of our proposed iRP is outlined in Fig. 2. It is constructed
by replacing the two-step interpolation in the previous RP with a
single interpolation that can be obtained by modifying the BF. The
iRP, thereby, is expected to be superior in edge preserving.

Fig. 3. vf,j(n) and vb,i(m) of the modified BF. Where blue regions
represent filter sizes. Top: vf,j(n). Bottom: vb,i(m). Black dots
represent pixels to be interpolated and gray ones are available pixels
for interpolation.

3.1. Bilateral Filter for the iRP

The k-th level outputs in the iRP are calculated as

x(k+1) =

{
(B∗(k))+x(k) 0 ≤ k ≤ Ksig − 1

L(k)x(k) Ksig ≤ k ≤ K − 1
, (7)

x̂(k) =

{
x(k) −B∗(k)x(k+1) 0 ≤ k ≤ Ksig − 1

H(k)x(k) Ksig ≤ k ≤ K − 1
, (8)

where B∗(k) ∈ RHkWk×HkWks
2

contains filter coefficients of the
modified BF in each row. Moreover, Hk and Wk are the height and
the width of the k-th level input image, respectively, and s(< 1) is
the scaling factor. (B∗(k))+ is introduced in Sec. 3.3. Note that
the original BF is not directly applicable to irregularly placed pixels
such as the warped image by Φ. In order to apply the BF to the RP,
it should be modified.

3.2. Derivation of B∗(k)

First we calculate the upsampling matrix B∗(k). Before calculating
B∗(k), the following preprocessing is performed:

x′(k+1) = B(k)x(k), (9)

where B(k) ∈ RHkWks
2×HkWk contains filter coefficients of the

modified BF in each row. To calculate B(k), a pre-retargeted image
rf is calculated by

rf = R(k)x(k). (10)

Let q(k)
u,x and q

(k)
u,y be vectors containing coordinates of x′(k+1), re-

spectively. The filter coefficients of the modified BF are represented
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Fig. 4. Enlarged portions of approximated Lena from downsampled
64× 64 images.

as follows:

B(k)(j, vf,j(n)) =
wf,s(j, n)wf,i(j, n)∑

n∈nnum

wf,s(j, n)wf,i(j, n)

, (11)

wf,s(j, n) = exp

(
−df,x(j, n)

2 + df,y(j, n)
2

2σ2
1

)
, (12)

wf,i(j, n) = exp

(
− (rf (j)− x(k)(vf,j(n))

2

2σ2
2

)
, (13)

df,x(j, n) = q
(k)
d,x(vf,j(n))− q(k)u,x(j)/s, (14)

df,y(j, n) = q
(k)
d,y(vf,j(n))− q(k)u,y(j)/s, (15)

where j is a pixel index of x′(k+1) in (9) and vf,j contains pixel
indices in the support region of the BF, which satisfies both (16) and
(17):

q(k)u,x(j)/s− lf ≤ q
(k)
d,x(vf,j(n)) ≤ q(k)u,x(j)/s+ lf , (16)

q(k)u,y(j)/s− lf ≤ q
(k)
d,y(vf,j(n)) ≤ q(k)u,y(j)/s+ lf , (17)

in which lf is the filter size of B(k) and n is the index of vf,j illus-
trated in Fig. 3. Additionally, nnum in (11) is the number of elements
in vf,j , q(k)

d,x and q
(k)
d,y are vectors containing coordinates of p′ in

(4), respectively, and σ1 and σ2 are standard deviations of Gaussian
distributions.

B∗(k) ∈ RHkWk×HkWks
2

in (8) can be similary obtained as
follows. First, a blurred image rb is calculated as

rb = G(k)x(k), (18)

where G(k) is the Gaussian filtering operator. After that, B∗(k) is

Table 1. Parameters of iRP
Parameters σ1 σ2 lf lb λ

iRP 5 8 2 5 0.04
CT-iRP 20 30 3 8 0.04

Table 2. Performance comparison of linear approximated images
from higher decomposition level: PSNR (dB)

Ksig = 1 ( reconstruction from 128× 128)
Image LP MD BC RP iRP

Monarch 28.35 25.69 27.27 28.36 34.50
Pepper 31.99 29.33 31.05 32.39 36.72
Lena 31.81 29.15 31.10 32.66 35.95

ksig = 2 ( reconstruction from 64× 64)
Image LP MD BC RP iRP

Monarch 22.30 20.56 21.60 22.11 29.65
Pepper 26.13 24.53 25.72 26.41 32.12
Lena 26.18 24.76 25.97 26.72 31.98

obtained as

B∗(k)(i, vb,i(m)) =
wb,s(i,m)wb,i(i,m)∑

m∈mnum

wb,s(i,m)wb,i(i,m)

, (19)

wb,s(i,m) = exp

(
−db,x(i,m)2 + db,y(i,m)2

2σ2
1

)
, (20)

wb,i(i,m) = exp

(
− (rb(i)− x′(k+1)(vb,i(m))2

2σ2
2

)
, (21)

db,x(i,m) = q
(k)
d,x(i)− q(k)u,x(vb,i(m))/s, (22)

db,y(i,m) = q
(k)
d,y(i)− q(k)u,y(vb,i(m))/s, (23)

where i is shown in (4) and vb,i contains pixel indices in the support
region of the BF. It satisfies both (24) and (25):

q
(k)
d,x(i)− lb ≤ q(k)u,x(vb,i(m))/s ≤ q

(k)
d,x(i) + lb, (24)

q
(k)
d,y(i)− lb ≤ q(k)u,y(vb,i(m))/s ≤ q

(k)
d,y(i) + lb, (25)

where lb is the filter size of B∗(k) and m is the pixel index of vb,i.
vb,i(m) is also illustrated in Fig. 3. Furthermore, mnum in (19) is the
number of elements in vb,i.

3.3. Derivation of (B∗(k))+ using Tikhonov Regularization

Tikhonov regularization [29] is further applied to yield a decimation
matrix. (B∗(k))+ in (7) can be obtained by solving the following
least squares problem:

∥B∗(k)x(k+1) − x(k)∥22 + λ∥x(k+1)∥22, (26)

where λ is an arbitrary weight. As a result, (B∗(k))+ is obtained as

(B∗(k))+ = ((B∗(k))TB∗(k) + λI)−1(B∗(k))T . (27)

4. EXPERIMENTAL RESULTS

In this section, we validate our proposed iRP by applying it to a
couple of image processing applications. We used three 256 × 256
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Fig. 5. Enlarged portions of denoised Monarch with σ = 20.

grayscale images of Monarch, Pepper, and Lena as the test images.
As the conventional methods, we use the discrete wavelet transform
(WT), bicubic resizing (BC) and pyramid in [4] (MD). For the WT
and the low-pass filter for the LP, the well-known biorthogonal 9/7
filter set is used. In our implementation, The size and the standard
deviation of the Gaussian filter are 3×3 and σ = 0.75, respectively.
Additionally, parameters for the iRP are shown in Table 1.

4.1. Linear Approximation from Higher Decomposition Level

We measured the performance of the iRP by reconstructing images
from their low-resolution components, i.e., coefficients in high-pass
counterpart were zeroed out. We approximated the images after both
one and two-level decompositions. For the RP and the iRP, we set
Ksig = {1, 2}, Kfreq = 0, and γ = 0.2. Other than MS decom-
position pyramids, bicubic scaling is performed for a comparison.
First, the image is downscaled by bicubic scaling and it is interpo-
lated back to the original resolution. We use the imresize func-
tion in MATLAB for bicubic scaling. Table 2 provides the perfor-
mance comparison of linear approximation. Clearly, the iRP has the
best performance for all test images. The approximated portions of
Lena are presented in Fig. 4. Since the BF preserves edges, the
reconstructed image with the iRP has fewer artifacts than others.

4.2. Image Denoising

Here, we introduce the performance of the CT based on the iRP (re-
ferred to CT-iRP) by applying it to image denoising. It can be ob-
tained by replacing a pyramid in the CT with the iRP and directional
subbands are calculated as

ŷ(k) = D(k)
n x̂(k), (28)

where ŷ(k) and D
(k)
n are directional subbands and the k-th level

transform by DFBs [11–13] with 2n subbands, respectively. For
comparing the pure performance of pyramid structures, we choose
the simple hard-thresholding method. We select a threshold of 3σ,
where σ is the standard deviation of noise. Furthermore, redundan-
cies of all CTs are set to about 1.33. There were {32, 16, 16, 0,

Table 3. Performance comparison for image denoising: PSNR (dB)
Monarch

σ 5 10 15 20 25 30
WT 34.88 30.02 27.34 25.55 24.28 23.81

CT-LP 32.49 28.38 26.27 24.85 23.77 22.93
CT-MD 31.87 28.24 26.53 25.48 24.65 24.03
CT-RP 33.47 29.43 27.19 25.72 24.66 23.81
CT-iRP 33.21 30.84 28.89 27.21 25.70 24.21

Pepper
σ 5 10 15 20 25 30

WT 35.40 31.14 28.62 26.91 25.69 24.67
CT-LP 33.55 30.02 27.94 26.52 25.43 24.55
CT-MD 33.32 30.60 29.16 28.06 27.20 26.45
CT-RP 34.97 31.38 29.19 27.73 26.68 25.83
CT-iRP 33.60 31.40 30.18 29.16 28.05 26.47

Lena
σ 5 10 15 20 25 30

WT 35.10 30.79 28.45 26.84 25.65 24.66
CT-LP 33.44 29.86 27.93 26.65 25.65 24.92
CT-MD 33.41 30.27 28.81 27.86 27.09 26.43
CT-RP 34.94 31.27 29.33 28.07 27.13 26.37
CT-iRP 33.62 31.42 30.20 29.22 27.98 26.58

Noisy image 34.15 28.14 24.59 22.12 20.21 18.58

0} directional subbands for the CT with the LP [5] (referred to as
CT-LP), {32, 16, 8, 4, 4} for the CT with the improved pyramid
structure [4] (referred to as CT-MD), and {8, 16, 8, 4, 4} for the CT-
RP [14, 15] and the CT-iRP from fine to coarse scale. The numbers
for the CT-LP and the CT-MD were set as those reported by the orig-
inal researchers. The same filters as those in the original research on
the CT [4, 5], e.g., PKVA 2-D filter bank [13], were used. Table 3
summarizes the performance of denoising. It shows that the CT-iRP
always outperforms the CT-LP and all methods within 5 ≤ σ ≤ 30
for all test images. The enlarged portions of denoised images of
Monarch are shown in Fig. 5. It shows distortions that cover up
the whole images due to the DFB decomposition are reduced by us-
ing the CT-iRP. In addition, the CT-iRP preserves edges as shown in
white dots in wings.

5. CONCLUSION

In this paper, we propose a novel decimation operator for the retar-
geting pyramid. We replace the two-step interpolation in the pre-
vious RP with a single interpolation using the customized bilateral
filter. Furthermore, the decimation operator is improved by using
Tikhonov regularization. In our experimental results, the RP using
the proposed method outperformed conventional MSMD decompo-
sitions for a few image processing applications. Our future work
includes reducing the computational complexity and investigating a
method to compress side information of mesh in order to apply the
iRP to image coding.
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