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Abstract— Sparsity-based Distance Measure (SDM), a sparse

reconstruction-based image similarity measure was recently

proposed and shown to have promising applications in image

classification, clustering and retrieval. In this paper, we present

a statistical evaluation of SDM’s performance as an image qual-

ity assessment (IQA) algorithm. This evaluation is carried out

on the LIVE image database. We show that the SDM performs

fairly in comparison with the state-of-the-art while possessing

several attractive properties. Specifically, we demonstrate its

robustness to rotation (90o, 180o), scaling, and combinations of

distortions – properties that are highly desirable of any IQA

algorithm.

I. INTRODUCTION
The vital role that digital multimedia plays in our lives

(ranging from medical diagnosis to security to entertainment
to online society) is no longer a question for debate but rather
a well-accepted norm. This change to our lifestyle has led
to a rapid proliferation of multimedia content that needs
to be managed (compressed, stored, and communicated)
efficiently and effectively. The role of automated or objective
multimedia quality assessment to manage multimedia cannot
be overemphasized - especially given the cost of subjective
evaluation and the massive scale of multimedia data.

Automated or objective image and video quality assess-
ment algorithms have made giant strides in the past decade.
The invention of the Structural SIMilarity (SSIM) index [1]
heralded a wave of significant improvements in the automatic
assessment of image quality and in turn video quality as
well. Several excellent full-reference (FR) [2], [3], reduced-
reference (RR) [4], and no-reference (NR) [5] image quality
assessment (IQA) algorithms have since been proposed. Each
of these algorithms take us a step closer to the ultimate goal
of being able to mimic the human visual system’s assessment
of image quality. Given the context of the proposed work,
we will restrict our focus to full-reference IQA algorithms.

The underlying principles of the state-of-the-art FR IQA
algorithms have ranged from attempting to model the phys-
iology of the human visual system [6] to using abstract
notions from information theory [3]. An excellent exposition
of these principles can be found in [7]. The success of
these varied principles leads one to believe that there could
either be several different approaches to solving the FR IQA
problem or that these approaches are yet to converge to the
true solution. Recent works by Guha et. al. [8], [9], [10]
provide yet another approach to measuring image similarity
that is based on sparse representations of natural images.

This is a promising approach given its close analogy with
sparse representations in the human visual system [11]. Their
works provide several flavors of sparsity-based image simi-
larity measurement that are tailored to various applications
including FR IQA.

In this paper, we consider one such flavor – the SDM, that
we feel is intuitively well-suited for FR IQA, and attempt
to determine its efficacy. A preliminary evaluation of the
SDM as an FR IQA has been carried out by Guha et. al. [8].
The main contributions of this work are: (i) a comprehensive
statistical performance evaluation of the SDM on the LIVE
image database [12], [13], and (ii) a demonstration of several
useful properties of the SDM that make it an attractive FR
IQA algorithm.

The paper is organized as follows. Section II defines the
SDM and its motivation, Section III describes the statistical
evaluation of the SDM, Section IV demonstrates the useful
properties of the SDM and Section V concludes the paper
and discusses directions for future work.

II. SPARSITY-BASED DISTANCE MEASURE (SDM)

An interesting trend seen in image similarity measurement
is the use of Kolmogorov complexity-inspired [14] formula-
tions. An information distance between the two strings x and
y can be defined as max{K(x|y),K(y|x)} where K(x|y) is
the Kolomogorov complexity of x relative to y and vice-versa
for K(y|x). To convert it to a normalized symmetric metric,
a novel normalized information distance (NID) measure was
defined by Li et. al. [15] as follows:

NID(x, y) =
max{K(x|y),K(y|x)}
max{K(x),K(y)} (1)

where K(x|y) is the conditional Kolmogorov complexity of
x relative to y. While NID has nice analytical properties, it is
not practical since computing the Kolmogorov complexity is
an NP-hard problem. Recent methods attempt to approximate
Kolmogorov complexity using quantities that can be com-
puted using fast algorithms. To the best of our knowledge,
the first such approach to measure image similarity was
introduced by Nikvand et. al. [16] where the size of the
encoded bitstream from a lossless image coder was used to
approximate Kolmogorov complexity.

Guha et.al. [8] related sparsity and Kolomogorov complex-
ity based on the inference that the number of components
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required to represent a signal increases with signal complex-
ity. The SDM was then defined to measure image similarity
as follows.

SDM(X,Y ) =
N(X|Y ) +N(Y |X)

N(X) +N(Y )
. (2)

where X is the reference image; Y is the test image; N(X)
and N(Y ) represents the number of components required
to represent the image from the dictionary learnt from the
patches of X and Y respectively. N(X|Y ) and N(Y |X)
represent the number of components required to represent
the image from the dictionary learnt from the patches of Y

and X respectively. N(X) < N(X|Y ); since number of
components required to represent the current image X from
the dictionary learnt from the patches of X is always less
than the dictionary learnt from the patches of Y . Hence lower
values of SDM indicate better similarity between images
under consideration and is always greater than or equal to
one.

In our work, the SDM has been implemented using the
K-SVD algorithm [17] to find N(X), N(Y ) and the cross
term N(X|Y ), N(Y |X). A randomly chosen set of 3000
8⇥8 images patches were used for learning a dictionary
containing 128 atoms [8].

III. STATISTICAL EVALUATION

One of the main contributions of this work is to perform
a statistical evaluation of the SDM as an FR IQA algorithm.
The results of the statistical evaluation and an intuitive
explanation of the performance are presented in the following
subsections.

A. Evaluation

The SDM was evaluated over the LIVE database [12]
that consists of 779 images covering a range of 5 types
of distortions. There are 29 reference images and distortion
types include fast fading, white noise, JPEG, JPEG 2000
and gaussian blur. SDM is compared with the state of art
full reference algorithms such as SSIM [1], MSSSIM [2]
and VIF [3]. The SDM scores were fit to the subjective
scores (DMOS) using the four parameter exponential logistic
function specified in [18].

The results of the statistical evaluation are presented in
Fig. 1 and Table 2. Fig. 1 shows the scatter plots for each
of the distortion types in the database along with an overall
scatter plot. It is clear that the SDM performs best when
the distortion type is either blur or additive white noise and
performance drops for JPEG and fast fading distortions. We
present an intuitive explanation for this performance in the
following subsection. From Table 2, we see that the SDM
performs fairly when compared to the state-of-the-art using
Spearman Rank Ordered Correlation Coefficient (SROCC).
However, we show in Section IV that the SDM has several
useful properties that the state-of-the-art IQA algorithms lack
thereby making the SDM a very promising IQA algorithm.

B. Intuition

We present an intuitive explanation for the performance
of the SDM using images distorted with white noise. Fig.
3 and Table 4 corroborate the inference made in [8] about
requiring a large number of dictionary elements to represent
complex signals (for e.g., images corrupted with noise). The
loss in sparsity is clearly seen in Table 4. As the noise
variance increases, N(Y ), N(Y |X), and N(X|Y ) increase
suggesting (expectedly) that noise cannot be sparsely rep-
resented. We also observed the opposite effect for blurred
images i.e., a decrease in the aforementioned quantities. The
other distortion types (fast fading, JPEG and JPEG2000)
do not bring about changes to the images that significantly
affect their sparsity, thereby explaining the SDM’s average
performance for these distortions. These qualitative observa-
tions combined with the statistical evaluation in the previous
subsection suggest that the SDM is able to quantify departure
of images from “naturalness” that correlates fairly well with
subjective evaluation.

IV. SALIENT PROPERTIES OF THE SDM
In this section, we demonstrate salient properties of the

SDM that make it a very promising IQA algorithm and
distinguish it from the state-of-the-art IQAs. Specifically,
we demonstrate SDM’s robustness to rotation, scaling, and
combinations of distortions. The top row of Fig. 5 shows
various distortions and corresponding SDM, VIF, and MSS-
SIM scores. It is clear from Figs. 5b, 5c, and 5d that the
SDM outperforms both VIF and MSSSIM for the mentioned
distortion types. Fig. 5 is an illustrative example of the
robustness that has been consistently observed over a much
larger dataset. From Fig. 5c, it is worth highlighting that
unlike MSSSIM and VIF, the SDM does not require the
reference and distorted image sizes to match. It is to be
noted that a score close to 1 means low distortion for all
the algorithms considered.

We present an empirical explanation of the robustness of
SDM to rotation, scaling, and combinations of distortions.
The bottom row of Fig. 5 shows the histogram of the
maximum pair-wise correlation between the atoms of the
reference and distorted image dictionaries. Let DR and DD

be the reference and distorted dictionaries respectively. Let
DR = [aR1 , a

R
2 , . . . , a

R
128], DD = [aD1 , a

D
2 , . . . , a

D
128] where

a

R
i is the column vector of size 64 representing the i

th atom
of the reference dictionary DR, and a

D
j is the column vector

of size 64 representing the j

th column of DD. We construct
the correlation matrix R where Rij is the correlation between
the a

R
i and a

D
j . The maximum value of row i in R represents

the best matching atom in DD to a

R
i . The histograms in the

bottom row of Fig. 5 correspond to the row-wise maximum
correlation for each distortion type. Note that the histograms
in Fig. 5 correspond to the images directly above them.

From these histograms, we see that there are a large
number of atom-pairs with high correlation (> 0.9) for the
distortions where SDM is robust. This can be interpreted as
the dictionaries DR and DD being composed of atoms that
are “similar”. This in turn implies that the cross terms in
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(a) Fast fading. (b) Gaussian blur. (c) JPEG2000.

(d) JPEG. (e) White noise. (f) All distortions.

Fig. 1: Scatter plots of SDM vs DMOS for various distortions. The blue line represents the best fit function.

the SDM index (N(X|Y ), N(Y |X)) would be similar and
therefore the robustness of the SDM.

V. CONCLUSIONS AND FUTURE WORK

We have presented a statistical evaluation of the SDM and
shown that it performs fairly when compared to the state-of-
the-art. However, we have shown that the SDM possesses
several useful properties such as robustness to rotation, scal-
ing and distortion combinations that make it appealing in a
wider variety of applications than most popular full-reference
image quality assessment algorithms. The strength of the
SDM as an objective function has already been demonstrated
in image classification, clustering and retrieval applications
[8].

We believe that the SDM opens up interesting avenues for
further investigation in the measurement of image similarity
with potential extensions to video similarity as well. As fu-
ture work, we plan to explore these avenues with a particular
emphasis on video similarity measurement.
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FF Blur JPEG JP2K AWGN All
SSIM 0.9629 0.9481 0.9266 0.8711 0.9903 0.9298

MSSSIM 0.8499 0.9274 0.9445 0.962 0.9865 0.924
VIF 0.9587 0.976 0.9025 0.9355 0.8852 0.8677

SDM 0.8277 0.9102 0.8188 0.843 0.8913 0.7885

Fig. 2: Performance of the SDM on the LIVE image database measured using SROCC. Also shown are state-of-the-art IQA
algorithms.

(a) Original. (b) � = 0.117. SDM = 1.84. (c) � = 0.187. SDM = 1.95. (d) � = 1.0. SDM = 2.39.

Fig. 3: Intuition behind SDM’s performance illustrated using noisy images.

Noise � N(X) N(Y ) N(X|Y ) N(Y |X) SDM
0.117 8.441 23.3747 15.2877 43.1803 1.8377
0.187 8.4407 23.9843 16.6767 46.654 1.9531

1.0 8.2673 24.0303 26.8163 50.3037 2.3878

Fig. 4: An intuitive explanation of the SDM’s ability to measure image similarity. These values correspond to the images
in Fig. 3.

(a) AWGN. SDM = 2.0765, VIF
= 0.0303, MSSSIM = 0.0024.

(b) Rotation. SDM = 1.1026, VIF
= 0.0158, MSSSIM = 0.0473.

(c) Scaling down. SDM = 1.1311,
VIF, SSIM require size match.

(d) Combo. SDM = 2.2032, VIF
= 0.0075, MSSSIM = 0.1725.

(e) White noise. (f) Rotation by 180o. (g) Scaled down by 0.8. (h) FF and rotation by 180o.

Fig. 5: Robustness of the SDM to rotation, scaling, and a combination of distortions. Top row showing various distortion
types. Bottom row showing histogram of maximum correlation between atom pairs formed from reference and distorted
image dictionaries.
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