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Abstract—In this paper, we consider a dual-hop multicast-
ing multiple-input multiple-output (MIMO) relay system where
multiple transmitters multicast their own messages to a group
of receivers with the aid of a relay node, and all nodes are
equipped with multiple antennas. We aim at minimizing the
maximal MSE of the signal waveform estimation among all
receivers subjecting to power constraints at the transmitters
and the relay node. We propose a low complexity solution for
the problem under some mild approximation. In particular, we
show that under (moderately) high signal-to-noise ratio (SNR)
assumption, the min-max optimization problem can be solved
using the semidefinite programming (SDP) technique. Numerical
simulations demonstrate the effectiveness of the proposed algo-
rithm.

I. INTRODUCTION

In many practical communication systems, multiple users

(transmitters) need to send their messages to a group of

receivers simultaneously. For example, in an online interactive

gaming scenario, all the participants are interested to know the

current status of their rivals. If the participants multicast their

information, the interested users can receive all the messages

simultaneously. Multicasting from multiple sources can also be

used to support video conferencing and webcasts among mul-

tiple users. Next generation wireless communication standards

such as WiMAX 802.16m and 3GPP LTE-Advanced have

already included technologies which enable better multicasting

solutions based on multi-antenna and beamforming techniques

[1].

Due to its nonconvex nature, the problem of designing

optimal beamforming vectors for multicasting is hard in gen-

eral. The authors of [2] have designed transmit beamformers

for physical layer multicasting using rank relaxations. It has

been proven in [2] that the beamforming problem is NP-hard.

Using lower complexity transmission schemes, the information

theoretic capacity of the multi-antenna multicasting channel

was studied in [3].

The above works [2]-[4] considered single-hop multicas-

ting systems. However, as the transmitter-receiver distance

increases, it becomes necessary to adopt relay nodes to ef-

ficiently combat the pathloss of wireless channel. The authors

in [5] studied the lower-bound for the outage probability

of cooperative multi-antenna multicasting schemes based on

the amplify-and-forward (AF) strategy where the users are

equipped with a single antenna. Joint transmit and relay

precoding design problems were investigated in [6] for a two-

hop multicasting MIMO relay system where all nodes are

equipped with multiple antennas. An iterative algorithm has

been developed in [6] to jointly optimize the source, relay,

and receiver matrices. In order to reduce the computational

complexity of the iterative algorithm, a simplified algorithm

has also been proposed in [6] for the two-hop multicasting

system.

In this paper, we consider dual-hop multicasting MIMO

relay systems where multiple transmitters multicast their mes-

sages to a group of receivers with the aid of a relay node.

The transmitters, relay node, and receivers are all equipped

with multiple antennas. To the best of our knowledge, such

multicasting (from multiple sources) MIMO relay system has

not been investigated in existing works. Note that our paper

generalizes the multicasting scheme in [6] by multicasting

from multiple sources instead of the single-transmitter mul-

ticasting in [6]. It is obvious that due to the introduction of

multiple users, the mean-squared error (MSE) matrix decom-

position and hence the source and relay matrices optimization

procedure become much more challenging than that for the

single-transmitter systems. We aim at minimizing the maximal

MSE of the signal waveform estimation among all receivers

subjecting to power constraints at the transmitters and the relay

node. The problem is highly nonconvex with matrix variables

and the exactly optimal solution is very difficult to obtain.

By exploiting the optimal structure of the relay precoding

matrices, we propose a low-complexity solution to the problem

under some mild approximation. In particular, we show that

under (moderately) high SNR assumption, the problem can be

solved using standard semidefinite programming (SDP) tech-

niques. Numerical simulations demonstrate the effectiveness

of the proposed algorithm. Note that the proposed algorithm

supports multicasting multiple data streams in contrast to the

existing single data stream multicasting schemes [1]-[5].

II. SYSTEM MODEL

We consider a multicasting MIMO relay system where K
transmitters simultaneously multicast their information to M
receivers with the aid of a relay node as illustrated in Fig.

1. The kth transmitter and the relay node are equipped with
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Ns,k and Nr antennas, respectively. For the sake of notational

simplicity, we assume that each receiver has Nd antennas. The

algorithm developed in this paper can be straightforwardly ex-

tended to multicasting systems where receivers have different

number of antennas. The direct links between the transmitters

and the receivers are not considered since we assume that these

direct links undergo much larger path attenuations compared

with the links via the relay node.
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Fig. 1. Block diagram of a dual-hop multiuser multicasting MIMO relay
system.

We assume that the relay node works in half-duplex mode.

Thus the communication between the transmitters and re-

ceivers is accomplished in two time slots. In the first time

slot, the kth transmitter linearly precodes an Ns,k × 1 mod-

ulated signal vector sk (common message to all receivers)

by an Ns,k × Ns,k precoding matrix Bk and transmits the

precoded vector Bksk to the relay node. We assume that

E[sks
H
k ] = INs,k

, where E[·] denotes statistical expectation,

(·)H stands for the matrix Hermitian transpose, and In is an

n×n identity matrix. We denote Nb =
∑K

k=1
Ns,k as the total

number of independent data streams from all transmitters. The

received signal vector at the relay node is given by

yr =

K
∑

k=1

HkBksk + nr , HBs+ nr (1)

where Hk is the Nr×Ns,k MIMO channel matrix between the

kth transmitter and the relay node, yr and nr are the Nr × 1
received signal and additive Gaussian noise vectors introduced

at the first relay node, respectively, H =
[

H1, · · · ,HK

]

,

and B , bd
(

B1, · · · ,BK

)

, s ,
[

sT
1
, · · · , sTK

]T
. Here bd(·)

stands for a block diagonal matrix and (·)T denotes the matrix

(vector) transpose.

In the second time slot, the transmitters remain silent and the

relay node multiplies (linearly precodes) the received signal

vector yr by an Nr × Nr relay precoding matrix F and

multicasts the precoded signal vector

xr = Fyr (2)

to all the M destination nodes. From (1), (2), the received

signal vector at the ith receiver can be written as

yd,i = GiF (HBs+ nr) + nd,i

, Āis+ n̄i, i = 1, · · · ,M (3)

where Gi is the Nd ×Nr MIMO channel matrix between the

relay node and the ith receiver and nd,i is the additive Gaus-

sian noise vector at the ith receiver. In (3), Āi , GiFHB

is the equivalent MIMO channel between the transmitters and

the ith receiver, and n̄i , GiFnr + nd,i is the equivalent

noise vector at the ith receiver. We assume that all noises

are independent and identically distributed (i.i.d.) complex

circularly symmetric Gaussian noise with zero mean and unit

variance. Thus the covariance matrix of n̄i, C̄i = E
[

n̄in̄
H
i

]

is given by C̄i = GiFF
HGH

i + INd
, i = 1, · · · ,M.

In the next section, we consider optimizing the source

and relay precoding matrices in order to improve the MSE

performance of the system.

III. PROPOSED SOURCE AND RELAY DESIGN ALGORITHM

Due to its simplicity, a linear receiver is used at each

receiver to retrieve the transmitted signals. Denoting Wi as

an Nd × Nb weight matrix at the ith receiver, the estimated

signal vector ŝi is given by

ŝi = WH
i yd,i, i = 1, · · · ,M . (4)

From (4), the MSE of the signal waveform estimation at the

ith receiver is given by

Ei =tr
(

(WH
i Āi − INb

)(WH
i Āi − INb

)H+WH
i C̄iWi

)

(5)

where tr(·) denotes matrix trace. Obviously, the power con-

sumed by the kth transmitter is tr(BkB
H
k ), k = 1, · · · ,K .

And from (2), the transmission power consumed by the relay

node is given by

tr
(

E
[

xrx
H
r

])

= tr
(

F
(

HBBHHH + INr

)

FH
)

. (6)

Given the transmission power constraints at the transmitters

and the relay node, we aim at minimizing the maximal MSE

of the signal waveform estimations among all receivers. This

problem formulation is important when the power consump-

tion is a strict system constraint that cannot be relaxed. In

this case, the transmit, relay, and receive matrices optimization

problem can be formulated as

min
{Bk},F,{Wi}

max
i

Ei (7a)

s.t. tr
(

F
(

HBBHHH + INr

)

FH
)

≤ Pr (7b)

tr(BkB
H
k ) ≤ Ps,k, k = 1, · · · ,K (7c)

where {Wi} , {Wi, i = 1, · · · ,M}, {Bk} , {Bk, k =
1, · · · ,K}, (7b) and (7c) are the transmission power con-

straints at the relay node and the kth transmitter, respectively,

and Pr > 0, Ps,k > 0 are the corresponding power budgets.

For any given {Bk} and F, the receiver Wi minimizing Ei

in (5) is the linear minimal mean-squared error (MMSE) filter

[8] and given by

Wi =
(

ĀiĀ
H
i + C̄i

)−1

Āi, i = 1, · · · ,M (8)

where (·)−1 denotes matrix inversion. By substituting (8) back

into (5), we have

Ei = tr
(

[

INb
+ ĀH

i C̄−1

i Āi

]−1
)

, i = 1, · · · ,M. (9)
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Therefore, we can equivalently rewrite the problem (7) as

min
{Bk},F

max
i

tr
(

[

INb
+ ĀH

i C̄−1

i Āi

]−1
)

(10a)

s.t. tr
(

F
(

HBBHHH + INr

)

FH
)

≤ Pr (10b)

tr(BkB
H
k ) ≤ Ps,k, k = 1, · · · ,K. (10c)

The min-max problem (10) is highly nonconvex with matrix

variables, and an exactly optimal solution is very hard to obtain

with a reasonable computational complexity. In the following,

we propose a low complexity solution to the problem (10).

It can be shown similar to [9] that the optimal F for each

link with the input-output relationship given by (3) has the

generic structure of

F = TDH (11)

where D = (HBBHHH + INr
)−1HB is the weight matrix

of the linear MMSE filter for the received signal vector at the

relay node given by (1), and the linear filter T can be treated

as the transmit precoding matrix for the effective second-hop

MIMO multicasting channel, which will be designed later.

Using the optimal F in (11), the MSE of the signal wave-

form estimation at the ith receiver in (9) can be equivalently

decomposed to

Ei = tr
(

[

INb
+BHHHHB

]−1
)

+tr
(

[

R−1 +THGH
i GiT

]−1
)

, i = 1, · · · ,M(12)

where

R = BHHH(HBBHHH + INr
)−1HB. (13)

Note that the first term in (12) tr
([

INb
+ BHHHHB

]−1)

is actually the MSE of estimating the signal vector s from

the received signal vector (1) at the relay node using the

linear MMSE receiver D, while the remaining term in (12)

can be viewed as the increment of the MSE introduced by

the second-hop. Using the optimal structure of F in (11),

the transmission power consumed by the relay node can be

rewritten as tr(TRTH). And the first term in (12) can be

rewritten as tr

(

[

INr
+
∑K

k=1
HkPkH

H
k

]−1
)

+ Nb − Nr

where Pk = BkB
H
k , k = 1, · · · ,K, is the covariance matrix

of the signal transmitted by the kth user. Therefore, the

problem (10) can be equivalently rewritten as

min
{Pk},T

max
i

tr





[

INr
+

K
∑

k=1

HkPkH
H
k

]−1




+tr
(

[

R−1 +THGH
i GiT

]−1
)

(14a)

s.t. tr(TRTH) ≤ Pr (14b)

tr(Pk) ≤ Ps,k, Pk < 0, k = 1, · · · ,K (14c)

where A < 0 indicates that matrix A is positive semidefinite

(PSD).

By applying the matrix inversion lemma, matrix R in (13)

can be rewritten as

R = BHHHHB
(

BHHHHB+ INb

)−1

. (15)

An interesting observation from (15) is that with increasing

first-hop SNR, the term BHHHHB approaches infinity. And

at a (moderately) high SNR level, there is BHHHHB ≫ INb
.

Here for matrices X and Y, X ≫ Y indicates that the

eigenvalues of (X − Y) are much greater than zero. Thus,

we can approximate R as INb
for the high SNR case [10].

As a consequence, tr
([

R−1 +THGH
i GiT

]−1)

in (14a) can

be closely upper-bounded by tr
([

INb
+ THGH

i GiT
]−1)

,

i = 1, · · · ,M, and the tightness of these bounds increase

with the increase in SNR. Therefore, the problem (14) can

be approximated as

min
{Pk},T

max
i

tr





[

INr
+

K
∑

k=1

HkPkH
H
k

]−1




+tr
(

[

INb
+THGH

i GiT
]−1

)

(16a)

s.t. tr(TTH) ≤ Pr (16b)

tr(Pk) ≤ Ps,k, Pk < 0, k = 1, · · · ,K. (16c)

Interestingly, it can be seen from the problem (16) that

T does not affect the first term of the objective function

(16a) and Pk, k = 1, · · · ,K, are irrelevant to the remaining

terms of (16a). This fact implies that the objective function

(16a) and the constraints (16b) and (16c) are decoupled with

respect to the optimization variables {Pk} and T. In this

case, matrices {Pk} can be determined independent of T, and

vice-versa, which greatly simplifies the design of the transmit

and relay matrices. Therefore, with the (relatively) high SNR

assumption, the problem (16) can be decomposed into the

following source covariance matrices optimization problem

min
{Pk}

tr





[

IN1
+

K
∑

k=1

H1,kPkH
H
1,k

]−1


 (17a)

s.t. tr(Pk) ≤ Ps,k, Pk < 0, k = 1, · · · ,K (17b)

and the relay precoder optimization problem

min
T

max
i

tr
(

[

INb
+THGH

i GiT
]−1

)

(18a)

s.t. tr(TTH) ≤ Pr. (18b)

The source covariance matrices optimization problem (17)

can be solved as follows. By introducing a PSD matrix X with

X <
[

IN1
+
∑K

k=1
H1,kPkH

H
1,k

]−1

, where A < B means

that A − B < 0, and using the Schur complement [11], the

problem (17) can be converted to the problem of

min
{Pk},X

tr (X) (19a)

s.t.

(

X INr

INr
INr

+
∑K

k=1
H1,kPkH

H
1,k

)

< 0(19b)

tr(Pk) ≤ Ps,k, Pk < 0, k = 1, · · · ,K. (19c)

The problem (19) is a convex SDP problem which can be effi-

ciently solved by the disciplined convex programming toolbox

CVX [12], where interior-point method-based solvers such as
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SeDuMi or SDPT3 are called internally, at a complexity order

of O
(

(
∑K

k=1
N2

s,k +K)3.5
)

[13].

By introducing TTH , Q, the problem (18) can be

equivalently rewritten as

min
Q

max
i

tr
(

[

INd
+GiQGH

i

]−1
)

+Nb−Nd (20a)

s.t. tr(Q) ≤ Pr, Q < 0. (20b)

By introducing Yi <
[

INd
+HL,iQHH

L,i

]−1
, i = 1, · · · ,M,

and a real-valued slack variable t, the problem (20) can be

equivalently transformed to

min
t,Q,{Yi}

t (21a)

s.t. tr(Yi) ≤ t, i = 1, · · · ,M (21b)

tr(Q) ≤ Pr (21c)
(

Yi INd

INd
INd

+GiQGH
i

)

<0, i = 1, · · · ,M(21d)

t ≥ 0, Q < 0 (21e)

where {Yi} , {Yi, i = 1, · · · ,M} and we use the Schur

complement to obtain (21d). Note that in the above for-

mulation, t provides an MSE upper-bound for the second-

hop channels. The problem (21) is an SDP problem which

can be efficiently solved by the disciplined convex program-

ming toolbox CVX [12] at a maximal complexity order of

O
(

(N2
r +M + 1)3.5

)

[13].

IV. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed

multi-source multicasting MIMO relay optimization algorithm

through numerical simulations. For simplicity, we assume that

the transmitters and the receivers are equipped with Ns and Nd

antennas each, respectively, and Ps,k = Ps, k = 1, · · · ,K . We

simulate a flat Rayleigh fading environment where the channel

matrices have entries with zero mean and variances 1/Ns

and 1/Nr, for Hk, k = 1, · · · ,K, and Gi, i = 1, · · · ,M ,

respectively. All simulation results are averaged over 500

independent channel realizations.

Since there is no existing solution for the problem addressed

in this paper, we compare the performance of the proposed

min-max MSE algorithm in Section III with the naive amplify-

and-forward (NAF) algorithm in terms of both MSE and

BER. For the NAF scheme, we use Bk =
√

Ps/Ns INs
, k =

1, · · · ,K, and F =
√

Pr/tr(HBBHHH + INr
) INr

.

In the first example, we compare the performance of the

proposed algorithm with the NAF approach in terms of the

MSE normalized by the number of data streams (NMSE) for

K = 2, M = 4, Ns = 2, Nr = 4, and Nd = 8. Fig. 2

shows the MSE performance of both algorithms versus Ps

with Pr = 20dB. For the proposed algorithm, we plot the

NMSE of the user with the worst channel (Worst) and the

average of all the users (Avg.). Our results clearly demonstrate

the better performance of the proposed joint transmitter and

relay optimization algorithm. It can be seen that the proposed

algorithm consistently yields the lowest average MSE over the

entire Ps region.
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Fig. 2. Example 1: Normalized MSE versus Ps. K = 2, M = 4, Ns =

2, Nr = 4, Nd = 8, Pr = 20dB.
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Fig. 3. Example 2: BER versus Ps. Varying number of receivers, K = 2,
Ns = 2, Nr = 4, Nd = 8, Pr = 20dB.

In the second example, we compare the BER performance

of the proposed algorithm for different number of receivers.

QPSK signal constellations are used to modulate the trans-

mitted signals. This time we set K = 2, Ns = 2, Nr = 4,

and Nd = 8. Fig. 3 shows the BER of the proposed algorithm

versus Ps with Pr = 20dB for different number of receivers. It

can be clearly seen from Fig. 3 that as we increase the number

of receivers, the worst-user BER keeps increasing which is

analogous to the results obtained in [6]. This is reasonable

since it is more likely to find a worse relay-receiver channel

among the increased number of users and we choose the worst-

user MSE as the objective function.

V. CONCLUSIONS

We considered a dual-hop multicasting MIMO relay system

with multi-antenna nodes and proposed transmit and relay

precoding matrices based on the min-max MSE criterion.

Under some mild approximation, we show that the prob-

lem can be solved with a significantly lower computational

complexity. Simulation results demonstrate that the proposed

transmitter and relay design algorithm outperforms the existing

techniques.
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