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ABSTRACT

Over-smoothing is one of the major sources of quality degradation
in statistical parametric speech synthesis. Many methods have been
proposed to compensate over-smoothing with the speech parameter
generation algorithm considering Global Variance (GV) being one
of the most successfull. This paper models over-smoothing as a ra-
dial relocation of poles and zeros of the spectral envelope towards
the origin of the z-plane and uses radial scaling to enhance spectral
peaks and to deepen spectral valeys. The radial scaling technique is
improved by introducing over-emphasis, spectral-tilt compensation
and frequency weighting. Listening test results indicate that the pro-
posed method is 11%-13% more preferable than GV while it has less
algorithmic delay (only 5 ms) and computational complexity.

Index Terms— speech synthesis, hidden Markov model, post-
filtering, mel-frequency cepstrum, global variance, radial scaling

1. INTRODUCTION

Statistical Parametric Speech Synthesis [1] (SPSS) relies on a map-
ping between linguistic features derived from text and acoustic fea-
tures that parameterize the speech signal. The mapping itself has an
over-smoothing effect to the generated acoustic features which can
be attributed to the fact that linguistic features are not descriptive
enough to discriminate between different realizations of the acous-
tic vectors. In SPSS based on Hidden Markov Models (HMMs), the
mapping between the linguistic and acoustic features is made via
decision trees. The decision tree maps the linguistic features (also
referred to as linguistic contexts) to a state of the context-dependent
HMM that describes the distribution of the acoustic features. Alter-
natively, one may use a neural network to obtain a distribution of
the acoustic features [2], [3] or restricted Boltzman machines [4].
Speech synthesis is made by mapping the input text to the linguistic
features and the linguistic features to the acoustic Gaussian distri-
butions. A sequence of Gaussian distributions is obtained, typically,
one per 5 ms of speech. Then, a trajectory of acoustic features is
derived from the sequence of acouastic models, a process that is re-
ferred to as parameter generation [5]. The trajectory is effectively
smoothed by considering delta- and delta-delta- acousting features
during parameter generation [1]. Overall, statistical mapping and
parameter generation have an over-smoothing effect to the generated
spectral sequence [6].

A number of methods have been proposed to reduce the over-
smoothing effect. Post-filtering methods originating from speech
coding have proven to be quite effective [7], [8], [9]. Post-filtering
increases the peak-to-valey range of the formants in a way that is

1The first author was an intern at Google London (UK) at the time the
experiments were conducted.

adapted to the generated spectral envelope but ignores the character-
istics of the trajectory of the generated parameters. Toda et al. [6]
observed that the variance of the generated parameters over time is
less than the variance of the original parameters and incorporated a
compensating term to the parameter generation phase. This method
and its offsprings are referred to as Global Variance (GV) [10]. The
method was originally made for Mel Cepstra (MCEP) but it can be
adapted to LSPs (Line Spectral Pairs) as well [11], [12]. Global
variance can be seen as a form of variance adaptation along the tra-
jectory. An extension of this idea is to use histogram equalization
techniques [13]. Since post-filtering increases the dynamic range of
the spectral parameters along the frequency axis while GV increases
the dynamic range of the spectral envelopes along the time-axis, it
is possible to have a configuration that uses both methods advanta-
geously.

In z-domain, over-smoothing effectively moves spectral enve-
lope poles/zeros inwards and away from the unit-circle. Radial scal-
ing of poles and zeros has been used extensively in speech coding
for the construction of perceptual weighting filters in Code-Excited
Linear Prediction (CELP) coders [7], [14] and regularization [15].
The transform moves poles and zeros along the radius of the unit-
circle by multiplying their radii with a factor ρ. Radial scaling cor-
responds to the z-domain transform z′ = ρ/z. In [16], Sorin et al.
proposed to use radial scaling for the enhancement of spectral en-
velopes in multi-form HMM synthesis and estimates ρ from pairs
of measured and synthesized spectra so that 2-nd order moments of
synthesized spectra are close to 2-nd moments of measured spectra
in log-domain. Scale factors are considered to be context-dependent,
thus a different ρ is computed for every HMM state.

The latter method has the advantage of providing a single-
parameter transform for the enhancement of spectral envelopes and
in our experiments it did provide improvement over the baseline but
could not rival GV. A drawback of this method is that it does not con-
sider spectral-tilt. Spectral tilt removal prior formant enhancement
is a common step in speech coding [17], [14]. Another drawback
is that it moves poles and zeros equally towards the unit-circle as-
suming that over-smoothing is uniformly distributed in frequency.
However, higher frequencies seem to be more smeared than lower
frequencies, which can be partially attributed to mel-scale frequency
warping in the spectral envelope parameterization.

This paper presents a novel radial scaling method for over-
smoothing compensation in HMM-based SPSS. The proposed
method uses context-dependent radial scaling [16] and introduces
three new ideas: over-emphasis, spectral-tilt compensation and fre-
quency weighting. Over-emphasis allows us to extend the amount
of emphasis beyond the one estimated, spectral-tilt compensation
flattens the spectrum prior post-filtering and frequency weighting
allows us to avoid applying over-emphasis in lower frequencies to
the benefit of over-smeared higher frequencies.
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The remainder of this paper is structured as follows: Section 2
describes the effect of radial scaling in Auto-Regressive Moving-
Average (ARMA) filters. Section 3 discusses spectral averaging
from the perspective of the source-filter theory of speech production.
Section 4 describes the proposed method and Section 5 explains how
to obtain the spectral-tilt vectors and frequency weighting matrices
used in Section 4. Listening test results are presented in Section 6
and a conclusion is given in Section 7.

2. RADIAL SCALING IN ARMA FILTERS

The spectral envelope of speech is conveniently modelled as a min-
imum phase Auto-regressive Moving Average (ARMA) filter H(z)
with the following transfer function in z-domain:

H(z) = A

∏M
m=1

(
1− z−1zm

)∏K
k=1 (1− z−1pk)

, |pk| < 1, |zm| < 1, (1)

where A is a gain factor and pk and zm are the poles and zeros,
respectively. The transform z′ = ρ/z radially moves pk and zm
along the unit circle. The transformed transfer function has zeros
z′m = ρzm and poles p′k = ρpk. When ρ > 1.0 the movement
is made towards the unit circle, increasing spectral peaks and de-
creasing spectral valleys. For speech signals, this corresponds to a
reduction of format bandwidth causing formants to become sharper
and valleys deeper. When ρ < 1.0 the movement is made towards
the origin with a smearing effect to the spectrum. In speech coding,
this transform is referred to as bandwidth expansion because it in-
creases formant bandwidth [15], [7]. Taking the complex logarithm
of H(z) gives:

log(H(z)) = log(A) +

M∑
m=1

log
(
1− z−1zm

)
−

K∑
k=1

log
(
1− z−1pk

)
, (2)

and using the series expansion:

log(1− αz−1) = −
∞∑
n=1

αn

n
z−n, |αz−1| < 1, (3)

the (real) cepstrum is:

c[n] = log(A)δ[n] +

K∑
k=1

pnk
n
u[n]−

M∑
m=1

znm
n
u[n], (4)

where u[n] is the step function (u[n] = 1 when n > 0 and zero
otherwise) and δ[n] is the delta function (δ[n] = 1 when n = 0 and
zero otherwise).

If we now apply a common linear scale factor ρ to all poles and
all zeros, we get:

ρnc[n] = log(A)δ[n] +
K∑
k=1

ρnpnk
n

u[n]−
M∑
m=1

ρnznm
n

u[n], (5)

which provides a convenient way to perform radial scaling with a
constant scale factor directly in the cepstral domain:

c′[n] = ρnc[n]. (6)

It is simple to show that radial scaling also corresponds to exponen-

tial weighting of the auto-regressive and moving average coefficients
and to exponential windowing of the impulse response [15]. Care,
however, has to be taken so that radial scaling does not render the
filter unstable; having all poles and zeros within the unit-circle re-
quires |ρkpk| < 1, |ρmzm| < 1. Further, note that the case where
the frequency axis is warped (i.e., along Mel-Scale) does not effect
the nature of the effect as pole/zero movement is made along the ra-
dius [16]. Interestingly enough, neither we or [16] identified a need
for energy normalization during radial scaling. This deserves further
investigation, though.

3. SPECTRAL AVERAGING AND THE SOURCE-FILTER
MODEL OF SPEECH PRODUCTION

According to the source-filter model of speech production, the
speech signal s[n] can be described as a LTI (linear time invariant)
system with the following transfer function in z-domain [17]:

S(z) = E(z)G(z)V (z)L(z) (7)

where E(z) models the excitation of the system (i.e. a pulse train),
L(z) models the radiating effect of the lips, G(z) models the glottal
source and V (z) the vocal tract. Modern vocoders model the spec-
tral envelope using minimum-phase assumptions, effectively ignor-
ing the anti-causal behavior of the glottal source during the parame-
ter extraction phase. Thus, the spectral envelope of the speech signal
is modelled by H(z) = G(z)V (z)L(z). The complex logarithm of
the spectral envelope is:

log(H(z)) = log(G(z)) + log(V (z)) + log(L(z)). (8)

The averaging effect that results from the mapping between the lin-
guistic features f and the spectral envelopes can be modeled as the
conditional expectation of log(|H(ejω)|) given the linguistic fea-
tures f :

E
{

log(|H(ejω)|)|f
}

= E
{

log(|G(ejω)|)|f
}

+

E
{

log(|V (ejω)|)|f
}

+ E
{

log(|L(ejω)|)|f
}
. (9)

Now, it is important to note is that the components of the spectral
envelope are not equally effected by the averaging. The radiation
effect from the lips is relatively constant and the glottal source is
related to changes in phonation and voice quality, which are kept
relatively constant during recordings while the variation of the vo-
cal tract can be much higher because it is inflicted by the lack of
information in linguistic features. Professional voice talents used in
modern speech database recordings are able to speak with a constant
speaking style and voice quality during the recordings. Further in-
vestigation is, however, needed to determine the level of variation of
each component within a linguistic context, although some relation-
ship with pitch is already well documented [18].

4. CONTEXT-DEPENDENT RADIAL SCALING WITH
FREQUENCY WEIGHTING

The enhancement method we propose is applicable to HMM-based
Text to Speech (TTS) systems where the spectral envelope of
the synthesized speech signal is parameterized using MCEP. The
method uses radial scaling [16] to increase the peak-to-valley spec-
tral distance around formants. Figure 1 shows an example of a
spectral envelope with three distinct peaks and three different scale
factors ρ ≥ 1. As the scale factor increases, the peaks become
higher and sharper (poles move towards unit-circle) and the valleys
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Fig. 1. Spectral envelope of phoneme /aa/ with three distinct peaks.
Effect of scale factor: blue line (bottom line), unfiltered; red line
(middle) ρ = 1.0163; green line (top): ρ = 1.0229.

become lower and narrower (zeros move towards unit-circle). Radial
scaling is seen as a compensation transform for over-smoothing. A
scale factor ρ is individually estimated for each state of the HMM.
Each HMM state is modelled using a multivariate Gaussian distri-
bution with a diagonal covariance matrix. The estimation is made as
follows:

An HMM-based TTS synthesizer is trained. The training
dataset utterances are synthesized with that HMM-based synthe-
siser. The generated spectral envelopes (MCEP) are stored prior
vocoding. Let cdata = [cdata[1], ..., cdata[P ]]T and cgen =

[cgen[1], ..., cgen[P ]]T be the training-set MCEP vectors and the
generated-set MCEP vectors, respectively. The generated-set MCEP
sequences are aligned to the training-set MCEP sequences and state-
level correspondances are extracted. For each HMM state, the corre-
sponding empirical 2-nd moments for the p-dimension are computed
as Mdata[p]2 = E{cdata[p]2} and Mgen[p]2 = E{cgen[p]2}, p =
1, ..., P from the training data vectors and the generated data vec-
tors, respectively. The computation of the moments is made using
only the vectors that belong to the corresponding HMM state. Each
moment vector is smoothed using a 5-tap moving average filter
along the vector dimensions 1, ..., P . The scale factor of the each
HMM state is computed using the following formulas [16]:

rp =

√
Mdata[p]2

Mgen[p]2
, p = 1, ..., P (10)

log(ρ) =

∑P
p=1 p log(rp)∑P

p=1 p
2

, p = 1, ..., P (11)

where rp, p = 1, ..., P is the L2-norm ratio sequence. The formula
is empirically derived from observations of L2-norm ratio sequences
and corresponds to a linear regression fit in the logarithmic sequence
log(rp), p = 1, ..., P . The solution can also be interpreted as a least-
squares fit of the moments in the log-domain.

An example of radial scaling applied to the phoneme /aa/ is
given in Figure 1. The figure depicts the original spectral envelope
as produced by the HMM synthesiser and the version enhanced by
the automatically estimated scale factor ρ. The enhancement empha-
sizes peaks and valleys, however, the peak-to-valley distance is still
smaller than that of the human speech samples. Speech synthesized
using Equation (11) sounds improved over the baseline, but not as
good as the one obtained via Global Variance. In order to further
improve quality, we propose to apply an over-emphasis factor ζ to

the scale factors ρ:
ρ̂ = ρζ . (12)

The result of the over-emphasis is also shown in Figure 1 (green line;
line with most variation). We experimentally determined that good
values for the over-emphasis factor ζ are in [1.0, 1.8].

The figure demonstrates that radial scaling affects the left-most
peak around the fundamental frequency, which is the result of the
interplay between the glottal formant and the first format. If radial
scaling is applied uniformly to all frequencies, the latter peak will
also be emphasized leading to two sorts of artifacts: first, the syn-
thesis filter may become unstable and second, the glottal formant
is emphasized which alters voice quality. The first artifact practi-
cally limits the amount of over-emphasis that can be applied. The
second artifact reduces the naturalness of speech as the glottal for-
mant becomes disproportionally dominant. On the other hand, we
observed that over-emphasizing higher frequencies is beneficial be-
cause it makes speech sound more “present” and “clear”; terms that
are hereby used in all caution as there is no standardized or dom-
inant terminology for the description of sound quality. From the
signal processing point of view, it is reasonable to expect that higher
formants are more smeared due to Mel-scale frequency warping in
MCEP.

We propose to address these issues using tilt-removal and fre-
quency weighting in the radial scaling. Tilt-removal is a typical step
that is made prior to the enhancement step in post-filtering. A post-
filter is essentially a normalized, compressed version of the spec-
trally flattened vocal tract spectral envelope ( [17], ch 12). In this
work, we used a simple fixed deemphasis filter:

D(z) = (1 + γ)−1 (1− γz−1) , (13)

with γ = 0.96 for 16 kHz sampling rate. Let δ be an approximation
of this filter in the MCEP domain and c be the MCEP spectral enve-
lope that we want to enhance. First we remove the spectral tilt from
c:

c′ = c+ δ. (14)

Then we apply a radial scaling transform as a simple matrix-vector
multiplication:

c′′ = Wc′, (15)

where W = diag
{

[ρζ , ρ2ζ , ..., ρPζ ]
}

. By defining F = W − I ,
where I is the identity matrix, we can express c′′ as

c′′ = Wc′ = (I + F )c′ = c′ + Fc′. (16)

The above equation expresses the radial scaling process as a filter-
ing of the de-tilted spectral envelope c′ with a post-filter e = Fc′.
However, the post-filter is still applied uniformly to all frequen-
cies. Emphasizing lower frequencies can be avoided by applying
frequency weighting to the post-filter term e. In the MCEP domain,
this can be done via a matrix-vector multiplication with a frequency
weighting matrixB:

e′ = Be = BFc′. (17)

Details regarding the construction of matrix B and vector δ are
separately presented in Section 5 for clarity. The enhanced spec-
tral envelope is obtained by combining the equations above and re-
introducing the spectral tilt after the frequency-weighted radial scal-
ing:

ĉ = c+BF (c+ δ). (18)

The implementation goes as follows: during training we es-
timate and store a scale factor for each Gaussian state of the

277



HMM; during synthesis, we retrieve a scale factor for each 5ms
frame of speech, apply over-emphasis (eq. 12) and smooth the se-
quence of emphasized scale factors with a zero-phase 3-tap filter:
[0.15, 0.70, 0.15]. Then, we use this factor to perform the post-
filtering. Thus, the proposed method has an algorithmic delay of
5 ms (1 frame) which is much smaller than the algorithmic delay of
GV which requires the whole utterance [19]. The complexity of the
proposed method is also less than GVs’ one.

5. SPECTRAL TILT FILTER AND FREQUENCY
WEIGHTING MATRIX IN MCEP DOMAIN

This section shows how to construct the deemphasis filter δ and the
frequency weighting matrix B in MCEP domain. Let c ∈ RP be a
MCEP vector and clog ∈ RN be the corresponding log-amplitude
spectral envelope that is sampled at the DCT-II (Discrete Cosine
Transformation) frequency grid ωn = (π/N) ∗ (n − 0.5), n =
1, ..., N. The log-amplitude spectrum can be obtained from MCEP
parameterization using [20]:

clog[n] =

P∑
p=1

c[p] cos (ω̃n(p− 1)) , (19)

where clog[n] and c[p] are the n-th and p-th element of the corre-
sponding vectors, while

ω̃n = tan−1 (1− α2) sin(ωn)

(1 + α2) cos(ωn)− 2α
. (20)

For a fixed frequency grid (i. e., the DCT-II) this can be written in
matrix form:

clog = Clmc, (21)

where Clm is an N -by-P MCEP-to-log-amplitude conversion ma-
trix with elements Clm[n, p] = cos (ω̃n(p− 1)) , n = {1, ..., N},
p = {1, ..., P}. The reverse operation (computing the MCEP pa-
rameters from a log-amplitude frequency response sampled at the
DCT-II frequency grid) can be made using the pseudo-inverse ma-
trixCml = pinv(Clm). MatrixClm is a frame expansion that goes
from P parameters (i. e., 40) to N � P parameters (i. e., 1024),
thus, the pseudo-inverse is optimal in the Mean Squared Error (MSE)
sense because it projects the log-amplitude spectrum back to the sub-
space of the MCEP.

Let δlog be the log-amplitude frequency response of D(z)
(eq. 13) at frequencies ωn, n = 1, ..., N . The deemphasis filter then
in MCEP is δ = Cmlδlog.

The frequency weighting matrixB is constructed as:

B = Cml∆Clm, (22)

where ∆ is a diagonal matrix with elements:

∆[n, n] =

{
ωn
ωc
, if ωn ≤ ωc

1, otherwise.
(23)

Thereby ωc is the transition threshold placed at 500 Hz.

6. EVALUATION

We conducted crowd-sourced listening tests to evaluate subjectively
the proposed system. The experimental conditions for the HMM
systems were similar to those presented in [2], Section 4.1. The
tests were conducted as A/B preference tests, where the raters were
presented two samples of speech (each the same sentence) and had

Table 1. Subjective preference (Pr.) test results. Comparison of
baseline system ‘-’ (no post processing of parameters) with base-
line + global variance (gv), baseline + proposed post-filter ap-
proach with over-emphasis factor 1.4 and de-emphasis transform
(pf), and baseline + global variance and proposed post-filter (gv +
pf). Columns A and B: type of systems compared in paired listening
test; Pr. A/B: percentage of subjects preferring system A over B (Pr.
A) or B over A (Pr. B). Last two rows: comparison of listener prefer-
ence when listening to samples via speakers (S) or headphones (H).
Last column contains the number of ratings per test Ns, Nh that is
made with speakers and headphones, respectively.

Voice A B A [%] B [%] p-val.(B) Nh Ns

F gv pf 6.8 65.8 < 0.001 256 104
F - pf 10.8 23.3 < 0.001 152 88
M gv pf 24.2 35.1 < 0.002 376 240
M - pf 15.8 48.3 < 0.001 160 72
M gv gv + pf 29.2 18.3 > 0.991 152 88
M (S) - pf 11.1 23.6 < 0.07 - -
M (H) - pf 18.8 61.9 < 0.001 - -

to state their preference on a 5-point scale. The samples were pre-
sented in random order to avoid ordering bias. One male and one
female British English voice were evaluated using 30 synthesized
utterances. Each pair was evaluated by roughly the same number of
raters. The tests were run on Amazon’s Mechanical Turk platform.
Each rater was presented to a random subset of 8 A-B tests in one
session. Since we cannot enforce raters to use headphones, it is best
to bias them and let them declare their preferences. Further, hav-
ing both speaker and headphone usage in the subjective evaluation is
more representative of real world usage.

The results of the preference tests are given in Table 1. Thereby
the speech synthesized by the same system with and without the
proposed enhancement method was compared to a baseline Mel-
Cepstral HMM system with no post enhancement of the parameters
and global variance maximation based enhancement of parameters.
We can observe that the proposed post-filtering method has con-
sistently higher preference over GV. The preference is significantly
higher for the female speaker because the corresponding speech
corpus exhibits high variability that effects the performanceof GV.
When GV is de-activated and simple post-filtering is used, the pref-
erence falls to 13%. For the male speaker, the preference is 11%.
All preference values are statistically significant. We found that
the cascaded operation of applying our post-filtering to GV-derived
spectral envelopes degraded quality over GV. In that experiment, the
scale factors were computed using GV-derived spectral envelopes.
Qualitatively, the formants were over-emphasized.

7. CONCLUSION

We propose a fast, lightweight, context-dependent post-filtering
method for improvement of speech quality in HMM-based TTS
systems. The method improves radial scaling techniques by intro-
ducing spectral tilt removal prior modification and a novel frequency
weighting mechanism. Listening tests indicate that the proposed
method is preferred over the state-of-the-art method of Global Vari-
ance by 11% for a male voice and 13% over the baseline for a female
voice for which GV does not work properly due to high variability
present in the training data. The proposed method has only 5 ms
algorithmic delay.
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