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ABSTRACT

First-order statistics of First Significant Digits (FSD) have been re-
cently exploited in multimedia forensics as a powerful tool to reveal
traces of previous coding operations. As an answer, adversarial ap-
proaches aimed at modifying the FSD histogram and fooling such
forensic methods have been proposed. However, the existing tech-
niques have limitations in terms of distortion introduced in the mul-
timedia object. In this paper, a transportation-theoretic formulation
of the problem is presented which provides a close-to-optimal solu-
tion. Such strategy is tested in a well-known image forensic scenario,
where FSDs of 8 × 8-DCT coefficients after single or double quan-
tization are modified in order to restore a certain target histogram
and the distortion with respect to the provided compressed image is
measured in terms of MSE.

Index Terms— Counterforensics, FSD statistics, multimedia
forensics, transportation theory.

1. INTRODUCTION

In the last decades, the issue of authenticating and preserving the
integrity of multimedia content has gained more importance, due to
the enormous amount of multimedia data created every day and the
availability of powerful editing tools, accessible also to non-skilled
users. For this reason, the recent research field of passive multimedia
forensics started facing the complex problem of detecting the traces
of processing previously applied to a given multimedia object, in
order to assess the trustability of its content.

As it happened to digital watermarking and steganography, the
need of an adversary-aware perspective recently emerged also in
multimedia forensics [1]. Indeed, the potential presence of a smart
adversary compromises the reliability of forensic methods, as proved
by the increasing number of counterforensic techniques proposed in
the literature which strongly decrease the performance of forensic
detectors. Counterforensic strategies have been introduced, for ex-
ample, for hiding traces of resampling [2], median filtering [3, 4],
lossy compressions [5, 6] and PRNU inconsistencies [7].

However, they usually target specific forensic methods and their
optimality under any criterion is not discussed. In this sense, the
recent approaches [8] and [9] represent a significant enhancement,
since they propose a general procedure to cope with an entire class
of image forensic detectors, the ones based on the histogram of the

input samples. In particular, in [9] the optimal modification in terms
of MSE distortion is derived, by means of a transportation-theoretic
formulation that reduces the problem to a single optimization pro-
cess. However, such optimal solution is obtained when the forensic
detector is based on the histogram of a bijective orthonormal trans-
formation of the input signal, for example the block-DCT.

On the other hand, another statistic which is often used in image
forensics, but does not fulfill these properties, is the distribution of
First Significant Digits (FSD) in the DCT domain, which has been
widely investigated in image processing [10] [11]. In JPEG image
forensics, the FSD histograms of block-DCT coefficients at certain
frequencies are analyzed and exploited in several decision problems.
Indeed, forensic methods have been designed for discriminating be-
tween uncompressed and compressed images [12], single and double
compressed images [13], or even images compressed different num-
bers of times [14].

Adversarial approaches have also been proposed in [6] and [15],
though presenting some limitations in terms of distortion introduced
in the image or lack of flexibility with respect to the forensic sce-
nario, as will be discussed in greater detail in Section 3.1.

In this paper, we focus on the problem of FSD histogram modi-
fication and propose a method to replicate a set of target histograms
starting from the ones of a given image.

With the same meaning as in [8], our attack can be seen as uni-
versal to detectors based on FSD first-order histogram, since no spe-
cific method is targeted but we consider a generic binary detector
taking as input a set of vectors and analyzing their FSD histograms
in order to decide between a null hypothesis H0 and an alternative
hypothesis H1, that can be adapted to suit different forensic prob-
lems. In the following, we will always assume hypothesis H1 is ver-
ified for the given image and we want to modify its FSD first-order
histogram so that its attacked version belongs to H0.

Since a generic detector is addressed, we do not express the ac-
ceptance region analytically nor rely on specific models for FSD
first-order statistics. However, in our framework we assume to have
a reference histogram to be replicated for each frequency, obtained
by averaging the histograms of a set of images for which H0 is veri-
fied.

Though such assumption might sound restrictive, it proves to
be suitable for the forensic scenarios mentioned before. Indeed, it is
possible to exploit the fact that the distribution of DCT coefficients at
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the same frequency is similar among images and so are the FSD first-
order statistics, even after quantization with the same quality factor.
Then, we will assume the decision region to be convex and consider
as target the histograms obtained from the averaging operation. This
leads to a conservative attack, since it is guarantees that the input
signal is moved to the acceptance region regardless of the particular
detector (thus preserving the universality of the attack), even if a
smaller modification might be sufficient.

The paper is organized as follows: in Section 2, we outline the
theoretical framework and present the transportation-theoretic for-
mulation. The novel method proposed in this paper is described in
Section 3. In Section 4, we report and comment the results of exper-
iments we performed on a image database. Finally, we conclude the
paper and discuss future work in Section 5.

2. PROBLEM FORMULATION

In order to use a compact notation throughout the paper, we formally
define the First Significant Digits and their histogram.

Let y ∈ YN ⊂ RN be a vector containing the samples of a
given discrete signal, where Y is the set of possible values for every
component of y. Then, let FSD : R −→ D,D := {0, . . . , 9}, be
the function mapping any real value a to its first significant digit, i.e.,

FSD(a) =


⌊

|a|
10blog10 |a|c

⌋
if a 6= 0

0 otherwise.

With a slight abuse of notation, we will indicate as FSD(y) the
vector given by (FSD(y1), . . . , FSD(yN )) ∈ DN .

Now, we can define the function H mapping any FSD vector
d ∈ DN to a vector h ∈ {0, . . . , N}10, representing its histogram
computed by considering bins corresponding to 0, . . . , 9.

As mentioned before, binary forensic detectors proposed in the
literature analyze a number of histograms, corresponding to a set
of frequencies. However, if a target histogram for each frequency
is provided, the process of replicating such histograms can be per-
formed separately on each frequency by means of the same proce-
dure. Therefore, in the following we will consider a single vector
ȳ, containing the DCT coefficients at a certain frequency, and a
given target histogram h∗. We consider a distance gy defined over
YN × YN as a measure for comparing ȳ and its modified version.

Then, the problem of modifying ȳ such that its FSD first-order
histogram is equal to h∗ minimizing the distortion is equivalent to
solving the following optimization problem

y∗ = arg min
{y|H(FSD(y))=h∗}

gy(ȳ,y). (1)

In order to express the problem in (1) in terms of optimal trans-
portation theory [16], as it is done in [9], we define d̄ := FSD(ȳ)
and a similarity measure for FSD vectors with respect to d̄:

gd(d̄,d) := min
{y|FSD(y)=d}

gy(ȳ,y).

Now, we can state that the solution of (1) is equivalent to follow-
ing sequence of problems:

d] = arg min
{d|H(d)=h∗}

gd(d̄,d), (2)

y∗ = arg min
{y|FSD(y)=d]}

gy(ȳ,y). (3)

It is worth noticing that, unlike in [9], we do not need to optimize
over a set of histograms, since we consider a single target one.

However, in order to find the optimal solution, gd(d̄, ·) must be
minimized over all the FSD vectors having histogram h∗. If h∗ =
(h0, . . . , h9), the number of vectors to be considered is given by(

N

h0

)(
N − h0

h1

)
· · ·

(
N − (h0 + h1 + · · ·+ h8)

h9

)
.

Such number is generally very high, even for small values of N ,
thus making the search of the exact d] computationally unfeasible.

For this reason, we propose a procedure based on a simple and
yet effective strategy, that provides a close-to-optimal solution of (2)
and (3) simultaneously.

3. PROPOSED METHOD

As mentioned before, the optimization in (2) requires the evaluation
of gd over every element of {d|H(d) = h∗}. Regarding (3), it can
be solved more easily if we assume that gy is a component-wise sum

gy(ȳ,y) =

N∑
j=1

g(ȳj , yj), (4)

where g is a symmetric convex function depending on the difference
between its input arguments. This is the case of the MSE, the most
extensively used distortion measure. Indeed, under these assump-
tions, minimizing gy(ȳ, ·) is equivalent to minimizing each g(ȳj , ·).

This significantly simplifies solving (3). Indeed, if we define S
to be the subset of R to which we can move the initial values, then
S is the union of the disjoint sets Sd = {s ∈ S|FSD(s) = d},
d ∈ D. For any real value y and any digit d, the elements in Sd
that minimize the absolute difference with respect to y can then be
identified.

Then, we define

fS(y, d) := arg min
y′∈Sd

|y − y′|,

DistS(y, d) := |y − fS(y, d)|.
If the optimization problem in (3) has more than one minimizer,

one of them is arbitrarily chosen, thus guaranteeing that fS is well-
defined. For instance, if S = Z · 10−1 then fS(50, 5) = 50
(DistS(50, 5) = 0), fS(−50, 7) = −70 (DistS(−50, 7) = 20),
fS(50, 3) = 39.9 (DistS(50, 3) = 10.1).

Considering this, in the following we propose a sub-optimal ap-
proach to solve (2), while (3) is solved optimally by means of the
map fS . The procedure determines a new vector z starting from
a given input vector ȳ and a target histogram h∗. For the sake of
simplicity, we assume ȳ is non-negative; otherwise we should just
consider the absolute values of its components and recover the signs
of the original vector after the transformation. Our approach relies
on the heuristic idea that, in order to obtain a low distortion of ȳ, the
elements with largest values should be modified as less as possible,
since they clearly introduce heavier distortion than the smallest ones.
To this end, in our method a suitable new digit is selected for every
element of ȳ and each new component is chosen by means of fS , as
described below.
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Precisely, starting from h∗, we define asDt
0 the unique set of N

elements belonging to D such that its histogram is h∗.
Then, the input vector ȳ is sorted in descending order by means

of a permutation1

ỹ = σ(ȳ),

and, starting from j = 0 (greatest value) until j = N − 1 (smallest
value), every component of ỹ is transformed as follows

d+j = argmind∈Dt
j
DistS(ỹj , d),

z+j = fS(ỹj , d
+
j ),

Dt
j+1 = Dt

j \ d+j .
Finally, the modified vector is given by

z = σ−1(z+),

where σ−1 is the inverse permutation of σ, and its FSD histogram is
exactly h∗. Therefore, z and d = σ−1(d+) are obtained as approx-
imate solutions instead of the exact ones, y∗ and d], respectively.

Because of the sorting operation, for elements with higher val-
ues the corresponding new FSD can be chosen among a larger pool
of digits; hence, they will be likely kept unaltered or assigned to a
digit that leads to a small DistS(ỹi, dt). On the other hand, small
coefficients might be moved to a new digit that is far from the origi-
nal one.

Such procedure clearly does not lead to the theoretical optimal
solution, since (2) is suboptimally solved. However, the fact that the
highest values in ȳ (i.e., the ones that would potentially introduce a
higher distortion) are mapped to a new FSD such that DistS is low,
helps to keep a low distortion between ȳ and z. Specifically, such
approach will be particularly effective when the values of ỹj decay
rapidly as j increases, as it happens for DCT coefficients.

3.1. Observations and comparison to previous art

It is worth noticing that, in the framework of JPEG image forensics
described before, the vectors ȳ are a transformation of the signal in
the pixel domain. However, as pointed out in [9], if the distortion
between the provided image and the modified one is measured in
terms of the MSE (or equivalently the PSNR) in the pixel domain,
the method proposed in Section 3 can be applied straightforwardly
to ȳ. Indeed, the orthonormality of the block-DCT transformation
allows us to consider the MSE as a distance directly in the DCT
domain, thus satisfying the assumptions on gy required in Section 3.

To the best of our knowledge, all of the forensic detectors based
on FSD histograms proposed in the literature only consider non-
zero-valued DCT coefficients in their analysis, while null coeffi-
cients are discarded and the FSD histogram is computed only for
bins 1, . . . , 9. The formulation in Section 2 copes with the more
general case where also the null coefficients can be moved in order
to replicate a target histogram defined over the 10 bins corresponding
to 0, . . . , 9. However, our procedure can be easily adapted to the 9
bin case by simply defining ȳ as the vector containing the non-zero
coefficients at a DCT frequency and considering D = {1, . . . , 9}
when computing the histogram, thus keeping unaltered the null val-
ues.

1We remark that, since in (4) the function g is the same for every j, any
permutation that sorts ȳ in descending order can be used (there might be
more than one because of repeated values in ȳ).

A significant difference of the proposed method with respect to
the approach in [15] is that coefficients are moved in sequence de-
pending on their absolute value, and regardless of their initial dis-
tribution. Indeed, in such technique, inspired to waterfilling solu-
tions [17], FSD histogram bins with an exceeding or lacking number
of elements with respect to the target histogram are first identified
and only transfers from the former to the latter ones are allowed.
This generally leads to a quite heavy modification in the DCT coef-
ficients, since it reduces the degrees of freedom in the movement of
coefficients.

Unlike [6], the procedure proposed here is able to restore any
target histogram and it can then be suitable for a larger number of
forensic problems. Indeed, the method in [6] imposes a reason-
able upperbound to the distance between every coefficient and its
attacked version, but it can be applied only for the case where the at-
tacker wants to restore the statistics of uncompressed images, since
it does not allow to produce an arbitrary histogram. On the other
hand, as long as a reference target histogram is available, the pro-
posed method can potentially be applied in any hypothesis testing
problem where H0 is “image has been compressed n times” and H1

is “image has been compressed m times”. Furthermore, the pro-
cedure in [6] only approximately provides a histogram that verifies
Benford’s law and, especially for high frequencies (or, in general,
frequencies were a strong quantization is performed), such approx-
imation can be not accurate. Indeed, it proves to be effective when
the lower frequencies are considered, which is true for most forensic
methods proposed in the literature (see [13] and [14]), but might not
happen for a generic detector.

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed method, we
considered the forensic scenario described in Section 2, i.e., where a
binary forensic detector takes as input a set of FSD histograms cor-
responding to 8× 8 block-DCT coefficients at different frequencies.

The images used in our experiments belong to the UCID
database [18].

We considered three different binary hypothesis testing prob-
lems, specified in Table 1. In each situation, we are interested in
modifying the block-DCT coefficients of images in the decision re-
gion corresponding to H1, in order to be in the decision region of
H0, by introducing a minimal distortion.

H0 H1

A uncompressed single compressed
B uncompressed double compressed
C single compressed double compressed

Table 1.

As introduced in Section 1 reference sets of FSD histograms
have been obtained by averaging the histograms of 600 randomly
chosen images in UCID for every frequency, from 1 to 64: specifi-
cally, we computed a set (hunq

1 , . . . ,hunq
64 ) from uncompressed im-

ages and the families (hQFt
1 , . . . ,hQFt

64 ) from single compressed im-
ages with quality factors QFt = {50, 60, 70, 80, 90}. Then, the
averaged histograms have been normalized, so that we have a ref-
erence probability for each digit, that is transformed into an integer
value according to the number of coefficients in each frequency.

A set of images (different of those used for the computation of
the target histogram) are applied the processing corresponding toH1

for the three cases considered in Table 1. For each of them, and each
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frequency, the FSD histogram is modified in order to yield the target
FSD histogram. The set S has been considered, for each frequency,
as a lattice with step equal to the maximum over a row of the 8× 8-
DCT transformation matrix, in order to encompass in the modifica-
tion the further distortion due to the quantization in the pixel domain.
In a first set of experiments we focus on the nonzero coefficients, i.e.,
D = {1, . . . , 9}.

In Tables 2 and 3 we report the PSNR corresponding to the av-
erage value of the MSE of the modified images with respect to the
provided compressed versions (the ones for which H1 is verified)
for each binary decision problem. In order to evaluate the valid-
ity of our approach, we implemented the method described in [15]
and compared the results obtained when the same target histogram
is considered. Indeed, such technique is also designed to replicate
a given histogram, thus allowing for a fair comparison with the pro-
posed method. The two methods are denoted in the Tables as TT
and WF, indicating the transportation-theoretic formulation and the
waterfilling approach, respectively.

In problem A, images were first single compressed with differ-
ent quality factors QF1 and then (hunq

1 , . . . ,hunq
64 ) have been tar-

geted. The same happens in problem B, where images were first
compressed with fixed quality factor 75 and then re-compressed with
differentQF2. In problemC, images are first compressed with fixed
quality factor 75, re-compressed with QF2 and the histogram sets
(hQFt

1 , . . . ,hQFt
64 ) were replicated for different QFt.

As we can see from the tables, the distortion introduced in the
image by the proposed method is significantly lower than the one
obtained by applying [15]. The difference in terms of PSNR ranges
from 3 dB to 12.61 dB.

QF1 50 60 70 80 90
TT 41.03 41.56 42.11 43.38 46.22
WF 34.47 34.22 34.58 34.91 34.77

QF2 50 60 70 80 90
TT 38.21 38.58 41.33 44.17 42.83
WF 33.14 33.14 34.29 35.86 35.12

Table 2. Case A and B, nonzero coefficients, 738 images.

QFt QF2 50 60 70 80 90

50 TT 42.71 41.37 38.49 39.20 38.61
WF 38.43 37.32 36.33 35.03 36.05

60 TT 42.08 42.95 41.33 39.08 40.70
WF 33.65 38.20 36.49 36.11 36.55

70 TT 39.23 42.25 42.98 42.16 43.57
WF 32.34 32.77 37.66 37.36 37.45

80 TT 36.99 38.93 41.93 44.04 43.82
WF 32.17 32.40 33.31 39.13 34.57

90 TT 36.17 36.73 39.22 44.16 40.85
WF 32.99 32.46 33.41 35.14 34.35

Table 3. Case C, nonzero coefficients, 738 images.

In a second set of experiments, we included also null coeffi-
cients in the modification, i.e., the bin corresponding to 0 is also
considered. In this case, the computational complexity significantly
increases, since more coefficients need to be moved in every fre-
quency. PSNR results for a subset of images, computed in a similar
way to those in Tables 2 and 3, are reported in Tables 4 and 5. They
are generally different with respect to the previous case, due to the
additional constraint on the null values and the availability of more

coefficients to be moved, but still we find similar results as before
when considering the difference between the two methods.

QF1 50 60 70 80 90
TT 43.67 43.67 43.60 43.54 43.43
WF 37.67 37.79 37.71 37.93 36.98

QF2 50 60 70 80 90
TT 43.23 43.19 43.58 43.60 43.63
WF 34.79 34.36 36.88 38.45 37.78

Table 4. Case A and B, zero coefficients included, 300 images.

QFt QF2 50 60 70 80 90

50 TT 34.36 34.26 34.79 36.05 35.28
WF 33.66 31.63 31.98 32.30 32.28

60 TT 35.03 34.89 35.47 36.45 35.96
WF 31.03 33.67 32.17 32.33 32.34

70 TT 35.66 35.76 36.45 37.56 37.04
WF 30.69 30.81 34.43 32.74 33.05

80 TT 36.06 36.49 37.79 39.41 38.74
WF 30.82 31.13 31.54 34.81 32.27

90 TT 37.12 37.14 39.36 42.88 40.71
WF 31.08 30.98 32.09 33.23 32.87

Table 5. Case C, zero coefficients included, 100 images.

Finally, we also present a comparison with the method in [6],
though some observations are in order. Indeed, this procedure leads
to a FSD histogram that depends on the input signal and is obtained
by means of a random process, thus preventing us to perform a fair
comparison. However, in order to compare the quality of the re-
sulting image in a realistic forensic scenario, we applied both ap-
proaches to the first 20 DCT frequencies only (for the case A where
only non-zero coefficients are considered in both methods), as state-
of-the-art forensic detectors limit their analysis to these frequencies.
The behavior of the average MSE (whose corresponding PSNR is
reported in Table 6) varies together with the quality factors. This is
due to the fact that, when a heavier quantization is performed, the
two methods restore histograms that are not very close for frequen-
cies 15-20, because [6] exploits a random signal-dependent process
while we impose a conservative reconstruction. On the other hand,
when quantization is lighter, the histograms almost coincide and our
strategy leads to a better quality in the resulting image.

QF1 50 60 70 80 90
TT 44.58 46.00 47.71 50.46 54.50

Method in [6] 45.18 46.16 47.80 49.99 53.65

Table 6. Case A, nonzero coefficients, 738 images considered.

5. CONCLUSION

We have presented a method based on heuristic criteria which pro-
vides a close-to-optimal solution for the problem of FSD histogram
modification with minimal distortion, expressed in a transportation-
theoretic fashion as a two-step optimization process. Considering
the promising results obtained in our experiments for the histogram
reconstruction phase, we plan to test our attack against state-of-the-
art forensic detectors facing different forensic problems. In addition,
it would be of great interest to extend our approach to distortion mea-
sures different from the MSE (i.e., the PSNR), such as the SSIM or
the WPSNR.
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