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ABSTRACT
Forensic image recognition tools are used by law enforce-
ment agencies all over the world to automatically detect ille-
gal images on confiscated equipment. This detection is com-
monly done with the help of a strictly confidential database
consisting of hash values of known illegal images. To detect
and mitigate the distribution of illegal images, for instance in
network traffic of companies or Internet service providers, it
is desirable to outsource the recognition of illegal images to
these companies. However, law enforcement agencies want
to keep their hash databases secret at all costs as an unwanted
release may result in misuse which could ultimately render
these databases useless.

We present SOFIR, a tool for the Secure Outsourcing
of Forensic Image Recognition allowing companies and law
enforcement agencies to jointly detect illegal network traffic
at its source, thus facilitating immediate regulatory actions.
SOFIR cryptographically hides the hash database from the
involved companies. At fixed intervals, SOFIR sends out an
encrypted report to the law enforcement agency that only con-
tains the number of found illegal images in the given interval,
while otherwise keeping the company’s legal network traffic
private. Our experimental results show the effectiveness and
practicality of our approach in the real-world.

Index Terms— Forensics, law enforcement, network
monitoring, somewhat homomorphic encryption.

1 INTRODUCTION

Forensic Image Recognition (FIR) tools are being used by
Law Enforcement Agencies (LEAs) worldwide in order to de-
tect illegal images on confiscated equipment. The Dutch po-
lice, for example, owns a database consisting of hash values of
so-called PIPs (Picture that Interests the Police), such as im-
ages showing glorification or overexposure of violence, indig-
nity or pornographic content, like zoophilia and pedophilia.
When the police confiscates equipment with data storage, the
hash of each picture found in the storage is computed and
looked up in the PIP database. If there are many matches,
the police knows that the confiscated equipment contains PIPs
and the investigation is continued manually to crosscheck.

Next to LEAs, companies like Internet service providers
(ISPs) or hosting providers, and especially public funded in-
stitutions also have an interest in filtering PIPs from their own
network traffic. In many countries, ISPs and hosting providers

are already filtering out illegal content, either voluntarily [1]
or are forced by law (e.g., the Communications Assistance for
Law Enforcement Act, CALEA, in the USA). Several com-
panies are even specialized in image filtering techniques for
network traffic.

To facilitate the fight of the distribution of PIPs on net-
work traffic, access to the existing police’s PIP database
would be beneficial. But a major concern of the police when
outsourcing the filtering to third parties is the leakage of the
PIP database. An even partially disclosed PIP database would
allow perpetrators to misuse the database, e.g., by matching
their data against the PIP database (before distribution) to
check if their images are detectable by the system or not.

A problem with current filter technologies is that they in-
stantly block access to known PIPs. This inherently reveals
that the blocked image is in the database, eventually caus-
ing the disclosure of the database. Next to the commercial
solutions, Peter et al. [2] propose a privacy-preserving archi-
tecture to outsource FIR. While preserving the privacy of the
owner of the confiscated equipment, their approach unfortu-
nately leaks the PIP database, so its security relies only on
legally binding license agreements.

On the other hand, ISPs and especially companies, do not
want to expose information on their own network traffic for
privacy reasons. Thus the police should learn only the least
amount of necessary information to take further legal actions,
i.e., the number of actual PIPs detected.

In this paper, we propose SOFIR, a patent-pending [3] Se-
curely Outsourced Forensic Image Recognition tool that in-
spects network traffic to detect known PIPs. SOFIR allows
third parties to scan their network traffic for PIPs, without
ever having access to the PIP database. At the same time, the
third party reveals only the number of PIPs detected in a cer-
tain interval in their network traffic. Our construction is based
on an homomorphically encrypted Bloom filter [4, 5].

The rest of the paper is organized as follows: Section 2 in-
troduces the building blocks used in our construction, which
in turn is described in Section 3. Our implementation param-
eters and results are presented in Section 4, while Section 5
concludes with a summary.

2 PRELIMINARIES

We use the following notation and building blocks. LetDB =
{d1, . . . , dn} be a database, consisting of n known PIPs.
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Bloom Filter. A Bloom filter (BF) [6] is a data struc-
ture which is used to answer set membership queries. It is
represented as an array of m bits which are initially set to
0. We write B[i] to denote the i-th position of the BF. In
general the filter uses k independent hash functions hj (1 ≤
j ≤ k), where hj : {0, 1}∗ → [1,m] maps a set element
to one of the m array positions. For each element e in a set
S = {e1, . . . , en} the bits at positions B[hj(e)] are set to
1. To check whether an element x belongs to the set S, we
check if the bits at all positions B[hj(x)] are set to 1, i.e., if∏k
j=1B[hj(x)]

?
= 1. If so, x is considered a member of set

S. BFs do not produce false negatives, but inherently have a
possibility of false positives (FPs), since the positions of an el-
ement may have been set by one or more other elements. With
appropriate parameters m,n and k, the false positive proba-
bility P can be set to a desired low level [7]. The bit size of
the BF can be approximated as: m = 1/

(
1− (1− P 1

k )
1
kn

)
.

Somewhat Homomorphic Encryption. Somewhat ho-
momorphic encryption (SHE) allows to perform a limited
number of different algebraic operations on plaintexts but
in the encrypted domain without knowing the decryption
key. We use the private-key lattice-based SHE scheme by
Brakerski and Vaikuntanathan (BV) [8], which allows for
multiplications and additions. Any other probabilistic seman-
tically secure SHE scheme that allows at least one multipli-
cation followed by multiple additions on encrypted values
can also be used (e.g., Gentry-Halevi-Vaikuntanathan [9] or
Boneh-Goh-Nissim [10]). The homomorphic encryption of
an element x is written as [[x]]. For the BV scheme we write:
[[x]]⊗ [[x′]] = [[x⊗ x′]], where ⊗ ∈ {+, ·} .

The BV scheme works over polynomials and uses the
following parameters: a polynomial degree α (which is a
power of 2), a modulus q (which is a prime such that q ≡ 1
(mod 2α)), the cyclotomic polynomial f(x) = xα + 1, the
discrete Gaussian error distribution χ with standard deviation
σ, the ring Rq = Zq[x]/〈f(x)〉, the number of supported ad-
ditions A and multiplications M and a prime t < q which
defines the message space as Rt = Zt[x]/〈f(x)〉.

A freshly generated ciphertext ct = (c0, c1) consists of
two elements in Rq (i.e., polynomials). We say that ct has
ciphertext degree C = 2. Multiplying two ciphertexts in-
creases the degree of the resulting ciphertext: (c0, . . . , ca) ·
(c0, . . . , cb) = (c0, . . . , ca+b). Since each polynomial coef-
ficient is at most of size q − 1, the ciphertext size |c| =
C · α · dlg(q)e is an upper bound and denoted by WC |c|.
The security of the scheme is measured by the runtime T of
the distinguishing attack [11]. Thus, lg(T ) denotes the bit
security of the scheme.

3 OUR SOFIR CONSTRUCTION

Scenario. A Law Enforcement Agency (LEA) encrypts its
PIP database and gives it to the ISP (or some other company
or hosting provider). The ISP uses the encrypted database
to find PIPs in its network traffic and regularly sends an en-

crypted report on the number of detected PIPs back to the
LEA. The LEA can decrypt the report to check the results of
the matching and, if necessary, starts an investigation.

Security Requirements. To securely outsource the FIR,
we require that the hash values of the database do not leak
to anybody. Note that this also includes the protection of the
matching result, since this inherently leaks information on the
database. To protect the privacy of the ISP, the LEA should
learn only the least amount of necessary information possible,
i.e., the total number of PIPs found.

Our Construction. We present SOFIR, which consists
of three phases: the initialization phase (run at the LEA), the
recognition phase (run at the ISP) and the revelation phase
(run at the LEA).

During the initialization phase, the LEA first generates a
secret key K for the BV scheme and initializes a BF. More-
over, an inner hash function hin (to compute the hash value of
an image) and several outer hash functions houtj , for j ∈ [1, k]
(to calculate the BF positions) are chosen.

To insert all PIPs d ∈ DB into the BF, first an inner hash
value x = hin(d) is computed. Then, for all x, the positions
pj = houtj (x) for j ∈ [1, k] are calculated, using the outer
hash functions. The BF positions B[pj ] are set to 1. After all
PIPs have been inserted into the BF, it is encrypted bit-by-bit
using the BV scheme and the secret keyK. The encrypted BF
[[B]] = ([[B[1]]], . . . , [[B[m]]]) can then be used in the SOFIR
recognition phase by the ISP as we explain momentarily.

Fig. 1: SOFIR architecture (simplified).

The recognition phase (cf. Fig. 1) is split into two al-
gorithms: Match (which identifies PIPs in the encrypted do-
main) and Accumulate (which adds up all the matching re-
sults and sends a confidential report to the LEA). To check
the network traffic for PIPs, each image file img is processed
in the following way. First, Match uses the inner hash func-
tion to calculate x = hin(img). The outer hash function is
then used to calculate the BF positions pj = houtj (x) for all
j ∈ [1, k]. Note that hin and houtj are the same hash func-
tions as used by the LEA in the initialization phase. The
encrypted BF positions [[B[pj ]]] are processed by the multi-
plier, which uses the multiplicative homomorphic property
of the BV scheme to privately compute the matching result
[[y]] =

∏k
j=1[[B[pj ]]]. The value [[y]] will be [[1]] in case of a

match and [[0]] otherwise. The Accumulate algorithm takes
[[y]] and adds it (using the additive homomorphic property of
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BV) to the final accumulated result [[R]], which is the total
number of PIPs matching the database. After a certain time
(e.g., one hour or day) or threshold (e.g., 50,000 queries), [[R]]
is sent to the LEA and the internal [[R]] is reset to [[0]].

During the revalation phase, given [[R]] and the secret key
K, the LEA decrypts [[R]] and outputs the number of possible
matches. If R > τ , where τ is a certain threshold, an alarm is
raised for further investigation.

Security. The security of our construction can be ana-
lyzed as follows. Due to the use of a probabilistic seman-
tically secure SHE scheme, it is impossible to distinguish
between [[0]] and [[1]]. Therefore, the BF itself does not leak
any information on the contents. Since all operations for
the matching (homomorphic multiplication of the encrypted
BF values), as well as the accumulation (homomorphic ad-
dition of encrypted values) are performed in the encrypted
domain, the ISP cannot gain any information on the en-
crypted database, the computations or the results. The LEA
receives only the accumulated result, which is the number of
found PIPs. Thus, the ISP does not reveal information on its
network traffic, except the number of detected image files.

4 IMPLEMENTATION AND FEASIBILITY STUDY

This section gives implementation details and a feasibility
study, where we explore the parameter space to get realistic
numbers for implementing SOFIR.

To setup our system we have to set (i) the system param-
eters, (ii) BF parameters and finally (iii) BV parameters. We
will show experimental results based on a real-world setting.

We start by estimating N , the number of image files that
need to be scanned per hour. To get a realistic value, we mon-
itored the network traffic of our University homepage for two
weeks and (on average) registered access to around 50,000
image files (i.e., .jpg, .jpeg, .png, .gif) per hour. This is our
starting point to determine our parameters.

(i) System Parameters. 50,000 images per hour allows
for 71.4 ms (60 min/50,000) of maximal processing time per
image and a FP-rate of 1/50,000 = 2 E-05 (one false positive
per hour)1. Since there is no publicly available information
on PIP database sizes, we assume a PIP database consisting
of n = 500,000 PIPs. The size n has an effect only on the BF
size m and not on our timing results.

(ii) BF Parameters. For n = 500,000 we calculatem (cf.
Section 2), the bit-size of the BF for different k and FP-rates
(P ≤ 2.0 E-05) as shown in Fig. 2.

Increasing the number of hash functions, significantly de-
creases the Bloom filter size. We realize the BF lookup by
multiplying the corresponding BF values per image ([[y]] =∏k
j=1[[B[pj ]]]). The number of hash functions also determines

M , the number of multiplications the BV scheme needs to
support (M = k − 1). Therefore, we will look at the influ-
ence of M on the efficiency of the BV scheme. Recall that

1Note that the LEA will post-filter the results to remove false positives in
case of an investigation to avoid accusing innocent.

Fig. 2: Bloom filter sizes in MB using n = 500,000.

we only have 71.4 ms per image.
(iii) BV Parameters. We choose our parameters for

the symmetric BV scheme based on the number of im-
ages scanned per interval. The accumulator has to perform
A = 50,000 additions. Recall, that the accumulator is adding
either an encrypted 0 or 1, implying that 50,000 is the biggest
value our encryption scheme needs to be able to handle. Thus,
we set the size of the message space t = 50,021 (next prime
> 50,000).

We also take into account the work of Lauter et al. [12]
(σ = 8) which assessed the security against the decoding at-
tack [11] and the distinguishing attack [13]. With these fixed
parameters, we calculate the flexible parameters for different
M as seen in Table 1.

M α dlg(q)e lg(T ) WC |c|
(a) 3 4096 140 107 140 kB
(b) 2 4096 100 196 100 kB
(c) 1 2048 77 91 38.5 kB

Table 1: Details of the used BV parameters (cf. Section 2).

Organizing the multiplications in form of a binary tree (cf.
Fig. 3) allows us to perform the multiplications in layers. Sup-
porting M multiplications (one per layer) in the BV scheme,
allows us to use up to k = 2M hash functions in our BF. We
verified the results by experiments.

1st MUL

2nd MUL

3rd MUL

Result

C = 2

C = 3

C = 5

C = 9

· · · ·

· ·

·

Fig. 3: Multiplication tree for k = 8.

We implemented the symmetric BV scheme in C/C++ us-
ing FLINT, the Fast Library for Number Theory [14]. We
tested the code on an Intel Xeon CPU X5677 with 3.47 GHz
running linux 3.11.0-sabayon x86 64. Our timing results are
shown in Table 2. By using the multiplication tree (cf. Fig. 3),
we always multiply ciphertexts with the same degree C. To
compute the total processing time, we have to add up the
times for all used operations (per layer). For instance, for
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(a), we have to compute 4, 2 and 1 multiplication in layers 1,
2 and 3, respectively for the matching, plus the final addition
for the accumulator. Thus, the total precessing time per im-
age is 1021 ms (4 · 63.6 + 2 · 154 + 453 + 5.58). Looking at
Table 2 we see, that (c) is the only setting, that achieves our
required processing time of max. 71.4 ms.

BV Operation C = 2 C = 3 C = 5 C = 9 Total

(a)
ADD 0.19 ms 1.56 ms 2.94 ms 5.58 ms

1021 msMUL 63.6 ms 154 ms 453 ms −

(b)
ADD 0.82 ms 1.39 ms 2.6 ms −

211 msMUL 48.9 ms 111 ms − −

(c)
ADD 0.41 ms 0.65 ms − −

20.85 msMUL 20.2 ms − − −

Table 2: Implementation results for the BV scheme. Times for a
single operation (MUL, ADD) dependent on the ciphertext degree.

Optimizations and Final Results. At this moment,
we have only a single threaded implementation of the BV
scheme. The BV scheme itself is highly parallelizable and
offers several optimization options as mentioned by Lauter
et al. [12]. This reduces the times for the homomorphic
multiplications and additions from Table 2.

Another possible optimization for SOFIR is to parallelize
the image processing and use a single CPU core per image.
Modern CPUs consist of 2-48 cores (e.g., AMD Opteron, In-
tel Xeon). For instance, using a usual 16 core CPU outputs
16 results in 1021 ms for (a), reducing the average process-
ing time to 63.8 ms per image. In this way we achieve our
goal of having a processing time per image of less than 71.4
ms. Using the BV parameters (b), a Quad-Core CPU brings
the average processing time down to 52.75 ms as shown in
Table 3. The final BF size |[[B]]| is computed as m · WC |c|,
since each of the m encrypted BF positions is of size WC |c|.
Recall that |[[B]]| is an upper bound as explained in Section 2.

Table 3 shows, that depending on the available cores, we
have several options to implement the system at our Univer-
sity. Having a CPU with 16 cores, allows us to use the BV
parameters (a), resulting in 1.8 TB of storage and a maximum
of 56,426 images per hour. A graphical representation of the
trade-offs on security, time and storage using different BV pa-
rameters for our single-core results from Table 3 is shown in
Fig. 4. Note that the timing results do not take the hash func-
tions into account. However, compared to the homomorphic
operations the times for hashing are negligible.

Limitations. Like all FIR tools, SOFIR is not able to

M k BV sec. FP-rate |[[B]]| time time (parallel)

3 8 (a) 107 b 1.5 E-05 1.8 TB 1021 ms 16 core
1.2 E-06 2.6 TB 63.8 ms

2 4 (b) 196 b 1.7 E-05 2.8 TB 211 ms 4 core
1.6 E-06 5.1 TB 52.75 ms

1 2 (c) 91 b 1.5 E-05 9 TB 20.2 ms 1 core
1.6 E-06 28 TB 20.2 ms

Table 3: Final implementation results. Encrypted BF sizes depend-
ing on k and BV. Single-core and optimized parallel timings.

detect encrypted PIPs. Encryption makes it impossible to ac-
cess and process the plaintext image without the decryption
key. In practice however, most network traffic in companies
or at hosting providers is unencrypted. SOFIR is designed to
detect illegal images in such (unencrypted) settings. It gives
companies more insight into their own network traffic by uti-
lizing the confidential PIP databases held by law enforcement
agencies. This is beneficial for both companies and LEAs to
detect and mitigate the distribution of PIPs.

Another limitation of our current system is the inability
to detect manipulated PIPs. To detect small image manipu-
lations (e.g., cropping, rotating, scaling, shifting, JPEG com-
pression, median filtering), a perceptual/robust hash function
should be used in place of the inner hash function hin . Such
a perceptual hash function is a compression function that out-
puts very similar values (in terms of some metric, e.g., the
Hamming metric) for perceptually similar pictures. Numer-
ous instantiations using different techniques are known [15,
16]. In its current form, SOFIR is not able to deal with the
fuzziness or error-proneness of perceptual hash functions. We
consider this as interesting future work.

Security

Time Space

(a)

Security

Time Space

(b)

Security

Time Space

(c)

Fig. 4: Graphical representation of the single-core implementation
results from Table 3 for different BV parameters.

5 CONCLUSION

We have presented SOFIR, a system to detect known illegal
images in network traffic in a privacy-preserving manner. Our
mechanism is not limited to images but can also detect all
other file formats, e.g., documents or videos. SOFIR crypto-
graphically hides the hash database from the involved compa-
nies. The encrypted reports to the LEA only contain the num-
ber of found illegal images in a given interval, thereby keep-
ing the company’s legal network traffic private. We instanti-
ated our proposed system using the somewhat homomorphic
encryption scheme from Brakerski and Vaikuntanathan [8]
and showed, that it is efficient to be used in real world ap-
plication scenarios.

As future work we plan to replace the inner hash func-
tion with (i) a perceptual hash funtion to detect small image
manipulations and (ii) different feature extraction algorithms,
e.g., digital camera identifiers or watermarks, that can identify
a camera model or images, respectively, in a unique way.
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