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ABSTRACT

Multimedia forensics concerns on extracting forensic informa-
tion from suspicious multimedia contents. This information was
embedded into the content inadvertently whenever an operation hap-
pened. Investigators may estimate the possible operations by obtain-
ing features from the multimedia content and applying detection al-
gorithms based on the statistics. While most existing works focus
on improving detection performance and finding what more we can
do, understanding the fundamental limit on the forensic information
that we can obtain from the extracted features is also important. It
enables us to understand the limit of forensicability. In this paper,
we explore the fundamental limit of forensicability by introducing
an information theoretical framework for multimedia forensics. We
use mutual information as the measure of forensic information con-
veyed by features to investigators. To show the analytical process,
we take the case of multiple JPEG compression forensics as an ex-
ample. We claim that, under typical circumstances, the maximum
number of compressions that we can detect by examine DCT coef-
ficients is up to 4, in an expected sense. In addition, we also find
the patterns of compression quality factors that contain the most and
least forensic information.

Index Terms— Digital Forensics, JPEG Compression, Informa-
tion Theory, Fundamental Limit.

1. INTRODUCTION

Due to the easy access and editing of multimedia signals, verifying
the authenticity of multimedia content becomes important. In order
to achieve this goal, many forensic techniques have been developed
to trace processing histories of multimedia signals [1]. For example,
an image’s capture device can be determined through multiple ev-
idences [2–5]. Many editing operations can also be detected, such
as contrast enhancement [6], resampling [7], median filtering [8],
and compressions [9–11]. Among these processing histories, image
compression history is of particularly forensic important because:
1) the estimated quantization table can help investigators to identify
the capture device; 2) multiple compressions reveal information of
possible manipulations, since recompression happens whenever an
image is re-saved after editing.

In order to increase the forensicability of investigators, re-
searchers have been endeavoring to improve the current detection
performance [12] and explore solutions to identify more compli-
cated operations [13]. Taking compression history as an example,
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many forensic schemes have been proposed to achieve better perfor-
mance of double compression detection [10,11,14–20]. Researchers
also attempt to detect three or more times of compressions using first
digit features, where it encountered some difficulty when the number
of compressions needed to be detected reaches four [21]. Addition-
ally, many new evidences of manipulations have been found to help
investigators make more reliable decisions [22, 23].

As we continuously challenge and improve forensicability, a
question would naturally arise - Is there a fundamental limit on
forensicability that we can never break? In other words, while we
are trying so hard to find “what we can do”, should we understand
and acknowledge “what we can not do”? Answering this question
would be both important for investigators and forgers. On one hand,
investigators would know their limit and how far current technology
can go. On the other hand, forgers could do manipulations to the
extent that beyonds this limit without worrying the exposure of their
traces.

In this paper, we introduce an information theoretical model
to explore the fundamental limit of forensicability. We understand
forensics as the procedure of extracting forensic information from
statistics of multimedia content, like features, where the information
was inadvertently embedded to the content whenever an operation
modifies the statistics. As long as the content has limited capacity
of the statistics, there will be a limit on the amount of information
that the content can contain. We find this limit by examining the
extent of mutual information between features and possible opera-
tions, which also implies the extent of fundamental forensic infor-
mation that investigators can obtain from extracting these features
regardless of explicit detectors. To demonstrate the effectiveness of
our framework, we use it to examine the case of multiple compres-
sion detection and answer the question of how many compressions
at most that we can detect.

2. INFORMATION THEORETICAL FRAMEWORK

Let us first review the process that a multimedia signal may go
through in a typical forensic analysis system. As it is shown in Fig.
1, an unaltered multimedia signal may experience some operations,
like editing or acquisition process, to become our inspection signal.
Then, investigators try to estimate what operations this signal has
gone through by extracting various features from the multimedia
content. Based on these features, explicit detection algorithms will
be applied to detect possible operations.

By exploring the fundamental limit of forensicability, we are an-
swering ”how much forensic information about the operations we
can, at most, obtain from the extracted features regardless of the
detectors?” In other words, we are concerning the relationship be-
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tween operations and features. This motivates us to abstract all the
processes happened between operations and features as a channel, as
shown in Fig. 2. Due to the content-dependent characteristic of mul-
timedia signal, the channel is random instead of deterministic where
the randomness comes from the content-dependent noise. In such
a case, each operation may generate different features for different
multimedia signal, i.e., a distribution of features can be obtained for
each operation. When these feature distributions overlap too much,
we may not be able to distinguish the corresponding operations. In
this paper, we propose to quantify the forensic information that the
feature can tell about the operations by measuring the mutual infor-
mation between them. Note that comparing with the related work
in [24], whose definitions of distinguishability between operation
chains are constrained to simple hypothesis model, our measure of
mutual information is also suitable for more general forensic models.

To demonstrate the effectiveness of this framework, we use mul-
tiple JPEG compression forensics as an example. When an image is
compressed into a JPEG format, discrete cosine transform (DCT)
will be applied on each 8 by 8 block of the image, where DCT co-
efficients are obtained for all subbands. Then, these coefficients will
be quantized and lossless coded to form the JPEG file. Decompres-
sion goes the reverse direction. In these processes, only the quanti-
zation is lossy, due to which the JPEG compression fingerprints are
introduced [9]. If the image is re-saved with different quantization
tables, new patterns of the histogram of DCT coefficients may be in-
troduced due to the double quantizations, which can be used as the
fingerprints of double JPEG compressions [10].

Since the histogram of DCT coefficients is a common-used fea-
ture in the literature for JPEG compression forensic, in this paper,
we will evaluate the maximal number of JPEG compressions that
can be distinguished by using this feature. The system model for
this specific problem is shown in Fig. 3, where X ∈ {1, 2, ...,M}
represents the number of JPEG compressions that is applied on the
unaltered image and Y = [y−N , ..., y0, ..., yN ] is the vector form of
the normalized DCT histogram that we observe.

We take one subband as an example to illustrate the relationship
betweenX and Y . We model the distribution of DCT coefficients of
an uncompressed image, D0, as a Laplace distribution [25],

P(D0 = d) = λ
2
e−λ|d|, (1)

with λ being the Laplacian parameter. Let QM = {q1, q2, ..., qM},
where the order of elements matters, be the set of possible quantiza-
tion step sizes that may be used for the subband in the compressions.
In multiple compression detection problem, we are given a JPEG
image and try to identify the number of compressions that has been
applied before the last one. Therefore, we keep the last compression
the same for all hypothesis. That is, if X = m, 1 ≤ m ≤ M ,
then the DCT coefficient D0 should have been quantized by step
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Fig. 3. Model for multiple compression detection forensics.
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sizes {qM−m+1, qM−m+2..., qM} in order, and the m-times quan-
tized coefficient Dm is

Dm = round
(
... round

(
round

(
D0

qM−m+1

)
× qM−m+1

qM−m+2

))
× qM .

(2)
With (1) and (2), we can theoretically derive the distribution of Dm,
which only has nonzero values at integer multiples of qM , as shown
below,
vm(λ, q

m
) =

[
vm,−N , vm,−N+1, ..., vm,N

]
=

[
P(Dm = −NqM ), ...,P(Dm = NqM )

]
, (3)

where q
m

= [qM−m+1, qM−m+2..., qM ], and vm(λ, q
m

) stands
for the theoretical distribution of DCT coefficients if m times of
compressions have been done. However, due to the model mis-
match and/or the rounding and truncation in the compression and
decompression, noise will be introduced and thus we may not ob-
serve the theoretical distribution vm(λ, q

m
). Let us denote the DCT

histogram that we actually observe as

Y m = [Ym,−N , ..., Ym,N ] = [h(−NqM ), ...h(NqM )], (4)

where h(·) represents the normalized histogram at a certain location.
By assuming that the noise W is an additive random variable, we
have

Y m = vm(λ, q
m

) +W. (5)

In summary, given λ and QM , for each X , there is a theoretical
DCT coefficient distribution V ∈ {v1(λ, q

1
), v2(λ, q

2
), ..., vM (λ, q

M
)}.

However, due to the model mismatch and/or rounding and truncation
effect, additive noise is introduced and thus the observed histogram
Y is a noisy version of V . The relationships among these random
variables are shown in Fig. 4.

3. CHANNEL NOISE MODELING AND ESTIMATION

In order to model the channel noise W , we use the real data statis-
tics to analyze how the observed normalized histogram differs from
the theoretical distribution. Without loss of generality, we exam-
ine the case where the image is compressed once, i.e., X = 1.
We use the 1338 uncompressed images from UCID database [26],
and JPEG compress them with quality factor 80. In order to de-
rive the theoretical DCT distributions for each single compressed
image, we first estimate the Laplacian parameter λ using DCT co-
efficients statistics from its uncompressed version; then, v1(λ, q)
is calculated according to (3). The observed normalized DCT his-
tograms, denoted as y

1
, are directly obtained from the single com-

pressed images. By subtracting v1(λ, q) from y
1
, we obtain the
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Fig. 5. Channel noise variance for each DCT histogram bin.

channel noise, denoted as w = [w−N , ..., wN ] for all images. From
histograms of wn, we observe that Gaussian distributions can ap-
proximately describe the channel noise, i.e., W ∼ N (0,Σ). By
assuming independence among different histogram bins, we have
Wn ∼ N (0, σn),−N ≤ n ≤ N .

To further model the variance σn, we plot the variance of Wn

for −14 ≤ n ≤ 14 in Fig. 5. We can see that variance are not
even for different histogram bins. Specifically, we observe higher
variance of Wn when n → 0. Since the theoretical distribution of
DCT coefficients for a single compressed image v1(λ, q) is quan-
tized Laplacian, which has similar shape with the variances of the
observation noise, we model σn as an increasing function of v1,n.
Specifically, we model σn = cv2α1,n, where c and α are positive con-
stants. Such a modeling is reasonable because that observation noise
tends to be larger for higher magnitude histogram bins.

By generalizing from this specific case of single compression,
our model of the channel noise for m times compressions is W ∼
N
(
0, diag

(
cv2αm (λ, q

m
)
))

. Thus, the conditional probability of the
channel output Y given input X can be described as

P(Y |X) = P(Y |V ) ∼ N (V , diag(cV 2α)). (6)

To estimate c and α, we use the statistics of V 1 and Y 1 as we
obtained at the beginning of this section. It is observed that each
image may result in a different estimated λ from others. Therefore,
the instances of V 1 are different due to their dependences on λ. Let
vλi

denote the theoretical distribution of single compressed DCT co-
efficients for image i, with vλi,n representing its nth element. Let
Yλi,n denote the random variable of the observed normalized his-
togram bin magnitude at the nth location. Thus, according to our
model, Yλi,n ∼ N (vλi,n, cv

2α
λi,n

). Then, the likelihood probability
of observing the nth normalized histogram bin from image i as yλi,n

is

P(Yλi,n = yλi,n) =
1√

2πcv2αλi,n

exp
{
− (yλi,n − vλi,n)2

2cv2αλi,n

}
. (7)

By maximizing the likelihood probabilities for all histogram bins
from all images, we obtain the estimates of c and α as,

(ĉ, α̂) = arg max
c>0,α>0

log

K∑
i=1

N∑
n=−N

P(Yλi,n = yλi,n), (8)

According to Karush-Kuhn-Tucker conditions,
K∑
i=1

N∑
n=−N

(yλi,n − vλi,n)2 ln vλi,n(
1

vλi,n
)2α̂ = ĉ

K∑
i=1

N∑
n=−N

vλi,n,

K∑
i=1

N∑
n=−N

(yλi,n − vλi,n)2

v2α̂λi,n

= ĉK(2N + 1). (9)

By solving (9), we can derive the optimal c and α. Specifically for
the UCID database, we have c = 0.0494 and α = 0.744.

4. MUTUAL INFORMATION AND EXPECTED PERFECT
DETECTION

By definition, the mutual information I(V ;Y ), which equals to
I(X;Y ), describes the amount of information that Y can tell about
V , and thus X . Therefore, we use I(V ;Y ) to measure the forensic
information that the DCT histogram contains about the number of
compressions. In forensic analysis, we usually assume that each
possible operation happens with equal probability. Therefore, we
use a uniform prior, i.e., P(X = m) = 1

M
, to calculate the mutual

information, as shown below,

I(V ;Y ) = log2M −
1

M

M∑
m=1

E
[

log2

M∑
j=1

exp
(

Φmj (V )
)]
, (10)

where

Φmj (V ) =

N∑
n=−N

[
α ln

vm,n
vj,n

− (yn − vj,n)2

2cv2αj,n
+

(yn − vm,n)2

2cv2αm,n

]
,

(11)
with [vm,−N , ..., vm,N ] representing the theoretical distribution of
DCT coefficients if it is compressed m times, and [y−N , ..., yN ] is
the normalized DCT histogram that we observe.

The second term in (10) is the conditional entropy H(V |Y ) =
H(X|Y ), which describes the amount of confusion on X given
the knowledge of Y . Thus, the smaller H(V |Y ) is, i.e., the closer
I(V ;Y ) is to log2M , then, the more forensic information that we
can extract from DCT histograms towards detecting M times of
compressions. Consequently, the better detection performance we
can get regarding distinguishing among 1, 2, ...,M times of com-
pressions. To further describe the relationship between mutual infor-
mation and detection performance, we have the following theorem
to show that the conditional entropy provides a lower bound on the
error probability:

Theorem 1 Consider any estimator X̂ such that X → Y → X̂ . If
it is better than a random decision, where the decision is made by
randomly pick one from the set of X with uniform probability, let
Pe = P(X 6= X̂), then we have

P 0
e ≤ Pe ≤

M − 1

M
, (12)

where P 0
e is unique and satisfies

H(P 0
e ) + P 0

e log2(M − 1) = H(X|Y ). (13)

This theorem can be proved by following the derivation of Fano’s
inequality in [27].

Theoretically, as long as the channel is not perfectly clean, con-
ditional entropy will not be zero, and mutual information cannot
reach its maximum log2M , i.e., perfect detection is not reachable
theoretically. However, if the channel noise variance is small enough
and the conditional entropy is close to zero, we can still argue the
existence of perfect detections under real experiment setting as fol-
lows. Let S denote the size of the database that we use to evalu-
ate a detector’s performance, and Pe represents the theoretical error
probability. We model each data in the database as an independent
Bernoulli random variable, with probability Pe being the one that
will cause detection error, which is denoted as “bad data”. Then, it
is well known that the expected time of the first occurrence of the
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“bad data” is 1/Pe. Therefore, if Pe < 1/S, expectedly, the “bad
data” will not occur in the database with size of S, i.e., a perfect de-
tection is achieved. We define the perfect detection in such sense as
the expected perfect detection, where the expectation is taken upon
all databases with the same size. The contrary of the above statement
also holds, where, if Pe > 1/S, then the expected perfect detection
cannot be achieved. In order to guarantee that any detector cannot
achieve expected perfect detection, we need the lower bound of error
probability, which is determined by conditional entropy, to satisfy

P 0
e > 1/S. (14)

Since the conditional entropy tends to increase with more numbers
of compressions needed to be detected, i.e., larger M , this criterion
can be used to determine the maximal M that we can achieve the
expected perfect detection.

5. SIMULATION RESULTS

To calculate the forensic information that DCT histogram contains
about the number of compressions, we use Monte Carlo simulation
to obtain the mutual information I(V ;Y ) in (10). Using subband
(2, 3) as an example, we find that the quantization step sizes cor-
responding to quality factor between 50 and 100 are 1 to 14; then
by excluding the trivial case where one quantization step size is an
integer multiple of another, we choose the candidate quantization
step sizes as {5, 6, 7, 8, 9, 11, 13}.To obtain the mutual information
for each M , we randomly select QM from this set element-wisely
and guaranteed qi−1 6= qi. For each selection of QM , we calcu-
late the mutual information by Monte Carlo simulation. We find
that I(V ;Y ) differs a lot with QM . Then, we test on all combina-
tions ofQM and summarize the patterns ofQM that can achieve the
highest and lowest I(V ;Y ). As shown in Fig. 6, those compres-
sions that always use a smaller quantization step size conveys the
maximum mutual information, which should be avoided by forgers.
While those compressions that periodically use the same quantiza-
tion step size with the smaller ones in the middle have the lowest
mutual information, and thus will be favored by forgers.

To verify theorem 1, we randomly picked a QM , and com-
pressed the 1338 images in UCID database using quality factors
corresponding to quantization step sizes q

m
to obtain m times com-

pressed images. By collecting all multiple compressed images with
compression times from m = 1 to m = M , we obtain a test
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Fig. 7. Experimental error probability for one example selection of q
versus the number of compressions needed to be detected, and their
corresponding lower and upper bounds.

database of 1338 ×M images. Then, based on our channel model,
we used maximum likelihood estimate to classify each image in this
database and calculated the error probability. Fig. 7 shows these
experimental probabilities for different M ’s, which lies between the
two theoretical bounds derived in theorem 1. Additionally, from
the statistics, we find that P 0

e > 1/S when M ≥ 4. According to
Theorem 1 and (14), this means that with this selection of QM , up
to 3 times of compressions can be detected in the sense of expected
perfect detection.

Table 1. minQM P 0
e for different M .

M 2 3 4 5 6
minQM P 0

e 0 3.9× 10−9 5× 10−5 2.1× 10−4 0.0016

Then, we can use (14) to determine the maximum of compres-
sions that we can detect. Since the mutual information depends on
QM , we use minQM P 0

e instead of P 0
e to verify the criterion in

(14). Table 1 lists the values of minQM P 0
e for different M ’s. If

we take S < 5000 as a typical database size in forensics, since
5 × 10−5 < 1/5000 < 2.1 × 10−4, we are not able to obtain ex-
pected perfect detection for M = 5. In other words, we can claim
that, no matter what detector we use and no matter what QM was
used during the compressions, we can only correctly distinguish 4
times of compressions, in the sense of expected perfect detection.

6. CONCLUSION

In this paper, we proposed an information theoretical model to find
the fundamental limit in forensics, where mutual information was
used to quantify the amount of forensic information features convey
about operations. We took the case of multiple compression detec-
tion as an example to find the maximum number of compressions
that can be detected. Along the analysis, we modeled the abstract
channel as a Gaussian additive channel and estimated the variance.
We derived mutual information based on the channel model and used
it to upper bound the performance of any detector investigator may
use. Then, the expected perfect detection was defined, and based on
which, we claimed that, by examining DCT coefficients, we can only
detect up to 4 times of compressions under typical circumstances. In
addition, we found the patterns of compression quality factors which
contain the most and least forensic information.
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