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ABSTRACT

The use of sparsity to encourage parsimony in graphical mod-

els continues to attract much attention at the interface between

multivariate Signal Processing and Statistics. We propose and

investigate two approaches for the detection of changepoints

in the correlation structure of evolving Gaussian graphical

models. Both approaches employ two-stages; first estimat-

ing the dynamic graphical structure through regularising the

precision matrix, before changepoints are selected via a group

fused lasso. Experiments on simulated data illustrate the ef-

ficacy of the two approaches. Furthermore, results on real

internet traffic flow data containing a Denial Of Service at-

tack demonstrate that the proposed approaches have potential

utility in information forensics and security.

Index Terms— Graphical models, Time-varying sys-

tems, Intrusion detection, Statistical learning, System identi-

fication

1. INTRODUCTION

The detection of changepoints in data where the distributional

properties change abruptly is of interest across a wide variety

of domains, such as network security [1, 2, 3], neurology [4]

and seismic analysis [5].

As we gather more data, with greater numbers of vari-

ables, we gain the power to estimate increasingly complex

relationships within our observations. This is particularly ev-

ident in the analysis of network traffic data, where transfer

rates are increasing alongside the number of devices partici-

pating in these networks. Cyber-attacks and espionage are a

growing concern for governments, businesses and consumers

who depend on these networks. Current intrusion detection

systems (IDS) used to detect cyber-threats are primarily su-

pervised in nature, driven by hard-coded rule-sets and heuris-

tic analysis of packet data [6]. These are increasingly be-

ing bypassed by so-called zero-day attacks which evolve to

counter the very specific rules in place. We present a more

data driven approach to the problem and consider unsuper-

Alex Gibberd acknowledges support from Defence Science Technology

Laboratory (Dstl).

James Nelson acknowledges support from Technology Strategy Board

and an EPSRC D2U grant.

vised learning to detect anomalous regions and relationships

that may be indicative of attacks.

Early changepoint research focused on univariate signals

[7], however, much recent work has focused on expanding

this into high-dimensional settings where the number of vari-

ables p is comparable or greater than the amount of data

points T [8, 9, 3]. In this p ≥ T regime it is often hard to

interpret the dependency structure between variables due to

the large number of possible interactions and the parameters

required to describe these.

Utilising the parameter shrinking property of ℓ1-based

regularisers, much recent work has looked at how to recover

sparse graphical models [10, 11], more recently, still via

time-evolving dynamic graphical models [12, 13]. In addi-

tion to work in structural estimation, fast O(T log T ) methods

have been developed to infer changepoints by optimising a

regularised likelihood function and fitting sparse piecewise

approximations to signals [9, 14].

This paper aims to combine the above state-of-the-art

convex regularisation approaches, detecting both correlation

structure and changepoints in network traffic. We introduce a

novel two-stage methodology that provides comparable com-

putational performance with current dynamic programming

methods that require computational cost O(T 2p4.5) [15].

This formulation lays the foundation for the development of

future methods, which take full advantage of the convexity,

potentially reducing computational cost from polynomial to

linear complexity.

2. PRELIMINARIES - DYNAMIC GAUSSIAN

GRAPHICAL MODELS

The methodology proposed here aims to extract piecewise

edge structure within a time dependent undirected Gaussian

graphical model. We focus on modeling continuous multi-

variate time-series data yt ∼ N (µt, (Θ
t)−1) t = 1, . . . , T ,

where yt ∈ R
p×1, µt ∈ R

p×1 is the mean and Θt = (θt
i,j) ∈

R
p×p is the precision matrix at time t. This matrix encodes

the edge structure of the graph Gt, where zero entries θt
i,j = 0

denote conditional independence between variables i and j
[16].

When deriving a maximum likelihood estimator for the

precision matrix in the static case, we usually estimate the
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changepoint

Fig. 1. We assume that the graph Gt is piecewise constant

over time with the time points where edge values jump across

the graph denoting changepoints. This piecewise model is

perhaps the simplest way for us to allow for dynamics and

relax the assumption of stationarity.

covariance using the sample mean µ̄ = T−1
∑T

t=1 yt, such

that: Θ̂ = arg maxX�0{L(X,S)}, where L(X,S) :=

log(det(X)) − tr(SX) and S = T−1 ∑T
t=1(yt − µ̄)(yt −

µ̄)⊤. However, in a non-stationary case, this approach with a

static sample mean µ̄ is no longer valid. If trends are present

in the data, estimation of covariance E[(yi,t−µi,t)(yj,t−µj,t)]
becomes difficult because, for example, the mean varies. As

such, the sample mean (over time) no longer converges to

the expectation at a given instance in time T−1
∑T

t=1 yi,t 6=
E[yi,t]. If care is not taken, variation in the mean µi,t (or

trends) in the data will give rise to erroneous components in

the correlation structure, which is usually interpreted as a con-

temporaneous functional relationship between variables [17].

Throughout the rest of this paper we will assume data has

been suitably de-trended. We are now only interested in mod-

eling the Gaussian noise structure yt ∼ N (0, (Θt)−1).
The goal of detecting changepoints in GGM therefore

boils down to enforcing sparsity on the precision matrix,

whilst also encouraging piecewise constant edge structure in

time with K ≪ T jump points.

3. GRAPHICAL CHANGEPOINT DETECTION

It is well known that addition of a regularisation factor

constructed from an ℓ1 norm can induce sparsity in the

parameters of a linear regression problem [18]. More re-

cently this property has been used to encourage sparsity in

the estimation for GGM, resulting in the estimator: Θ̂ =
arg maxX�0{L(X,S) − λG‖X‖1}, where ‖X‖1 =
∑

i,j |xi,j | is the element-wise matrix ℓ1 norm [10, 19]. We

consider the time-evolving variant of this model first pro-

posed by Zhou et al. [12] which uses a weighted moving

window to track changes in the graphical structure. The

resultant estimator is now for a time dependent graph:

Θ̂
t
:= arg max

Xt∈{X
t
+}Te

t=Ts

{
L(Xt,St) − λG‖X

t‖1

}
, (1)

where we refer to the set of positive semi-definite matrices

from time t = Ts, . . . , Te as {Xt
+}

Te

t=Ts
. To take into account

the cropping due to the window of size w we set Ts = w
2 + 1,

Te = T − w
2 . We now introduce a temporally local empirical

covariance estimator:

St =
( ∑

s

f(s)
)−1

t+w/2
∑

k=t−w/2

f(k − t + w/2)yk(yk)⊤,

where f(s) is a smooth positive kernel function defined over

the window s = 0, . . . , w. Whilst Zhou et al. consider the

graph structure to be a function of time, they also consider

the estimates of the graphs Θ̂
t

to be independent (or at least

assume no prior on this dependency/smoothness). Maintain-

ing this independence in estimation comes at a cost due to the

fact that we are only using a small portion of data (that within

the window) to estimate the graphical structure.

3.1. Graph Dependency

In an effort to increase the accuracy of structural estimation

and take into account dependency in the time series we now

consider optimizing jointly across the data set, combining a

smoothing and graphical regulariser. With this approach we

construct the joint estimator for Θ̂
t

making use of the de-

pendency structure that we presume to exist between graphs.

Reformulating and adapting the work of Danaher et al. [20]

(and Ahmed et al. in the discrete case [13]) we propose the

following joint graphical lasso (JGL) scheme:

Θ̂
t
: = arg max

Xt∈{X
t
+}Te

t=Ts

Te∑

t=Ts

(

L(Xt,St) − λG‖X
t‖1

︸ ︷︷ ︸

)

independent estimate

−λ∇

Te∑

t=Ts+1

‖Xt − Xt−1‖1

︸ ︷︷ ︸

fused ℓ1 penalty

. (2)

The motivation for the above is to extend the fused lasso of

Tibshirani [21] and apply it in the estimation of the precision

matrix. In the time series case where we have meaningful or-

dering of the data, this fused ℓ1 smoothing is consistent with

attempting to enforce local temporal dependency in the graph

structure. To optimize the objective in (2) we use an acceler-

ated coordinate descent scheme based on Nesterov’s method

[22, 23].

3.2. Two-step regularisation

When estimating changepoints, we would like to highlight

where the dependency of the graph changes taking into ac-

count all edges. We consider an approach to achieve this

through further regularising the solution of Eqs(1,2).

Taking these estimated graphs we encourage a piecewise

solution by smoothing Θ̂
t

with a group lasso penalty com-

bined with a least squares estimator. More specifically, we
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reparameterise the changepoint estimation problem accord-

ing to the work of Bleakley et al. [9] who start with a multi-

variate (dimension q) piecewise model U ∈ R
T×q such that

ut,· = γ +
∑t−1

i=1 diφi,· (note: we use φi,· to denote all ele-

ments in row i of φ) for t = 2, . . . , T , where γ = u1,· are the

initial values of the time series and φi,· = (ui+1,· − ui,·)/di

is a reparameterisation of the jumps in the model. In or-

der to avoid boundary effects we weight the jumps setting

di =
√

n/i(n − i). This linear model can then be written in

matrix form as U = 1T γ + XΦ, where X ∈ R
T×(T−1) is a

lower diagonal design matrix with entries xi,j = dj for i > j,

Φ = (φi,j) ∈ R
(T−1)×q is the jump parameter matrix and 1T

is a one vector of length T . Given this piecewise model a

multivariate total variation smoothed least squares estimator

takes the form of a group lasso problem:

Φ̂ := arg max
Φ∈R(T−1)×q

−
1

2
‖Ȳ − X̄Φ‖2

2 − λ

T−1∑

t=1

‖φt,·‖2, (3)

where X̄, Ȳ are the column centered design and data ma-

trix Y = (yt,j) ∈ R
T×q respectively [9]. Changepoints

in this case are simply the time points where non-zero fea-

tures are present T̂ = {t | φt,i 6= 0 ∀ t = 1, .., T ; i =
1, . . . , q}. In this situation, the group lasso penalty (a sum

over ℓ2-norms) attempts to squeeze these features in the jump

structure (columns within Φ) to zero [24]; increasing λ re-

duces the number changepoints. To apply this to the corre-

lation structure estimated in Eqs(1,2) we rearrange the edge

structure to form a new p(p − 1)/2 dimensional time series.

This is achieved by taking all upper triangular elements of Θ̂
t

and concatenating them to form a vector for each point in time

zt := (θt
i,j |∀ i = 1, . . . , p−1, i < j ≤ p) for t = Ts, . . . , Te

such that Z := (zt)Te

t=Ts
∈ R

(T−w)×(p(p−1)/2). Finally, to

extract changepoints in the correlation structure we simply

substitute Z for Y within Eq. (3) taking care to adjust the

limits and sizes of the jump/design matrix such T → T − w
and q → p(p − 1)/2.

The changepoint procedure described above is efficient

due to its convexity with a theoretical complexity of O(KTq)
for K jumps using an active-set strategy developed by Bleak-

ley et al. [9]. Coupled with the required estimation for the

graph at each point in time O(Tp3) via (1) this gives us an

overall complexity of ∼ O(KT 2p5).

4. EXPERIMENTS

4.1. Simulation

In order to examine the difference between independent and

JGL graphical estimation we look at how well the methods

recover graphical structure in some simulated cases. Data

is simulated (without loss of generality) by randomly adding

and subtracting four edges to an initial precision matrix at a

changepoint τ = 300, where the total length of the time se-

ries is T = 600. After checking that the resulting matrices are

positive semi-definite we then generate multivariate Gaussian

noise from this graph with p = 10 variables. For simplicity

only a single ground truth changepoint is simulated here with

K∗ = 1, however there is no reason that one cannot perform

this analysis for K∗ ≥ 1.
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Fig. 2. RMS error as a function of number of K change-

points estimated. Dashed lines give 67% confidence intervals

as approximated through the empirical cumulative distribu-

tion function over n = 60 experiments.

0 100 200 300 400 500 600
0.4

0.5

0.6

0.7

0.8

0.9

1

 

    

 

  

Fig. 3. The effect of smoothing via the JGL on edge recovery

accuracy as calculated at each time step. Shaded areas give

±1σ errors over n = 60 experiments.

Prior to changepoint estimation or smoothing we learn λG

using a holdout data set. We choose λG such that when given

no smoothing (λ∇ = 0) we recover a number of edges such

that at least the ground truth edges are maintained in the so-

lution. In the demonstrations, we fix λG = 0.5 and window

width w = 30.

In Figure (2) we evaluate the performance of the two

techniques by looking at the root mean square (RMS) er-

ror,

√

K−1
∑K

i=1(τ − τ̂i)2, of the estimated changepoints τ̂i

from the true changepoint τ . This plot demonstrates the ben-

efit of smoothness when extracting Θ̂
t

with the JGL where

we see tighter clustering in the estimation of changepoints,

this may be important for cases where K∗ > 1.
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The JGL estimation allows an extra degree of freedom

(over the independent estimation of Eq. 1) which balances

graph smoothness with sparsity. This is important, as apply-

ing large λ∇ can overwhelm the sparsity enforcement of λG.

This is such that some edges may be non-zero for the whole

period t = Ts, . . . , Te, not just within their true classes. In

selecting λ∇, we need to balance changepoint detection ac-

curacy in Fig. (2) against that of structural estimation within

Fig. (3).

In Fig. (3) we note a region around the changepoint where

more edges are estimated, this is due to the overlap of the

kernel function with the two ground truth regimes either side

of the changepoint and is particularly clear in the appropri-

ately chosen λ∇ = 30 case. From comparing the analysis in

both Figs. (2,3) we see that the JGL has an important role to

play, increasing both changepoint detection accuracy and the

stability of the edge structure beyond the independent graph

estimation.

4.2. Changepoint detection within internet traffic

In this section, we give a demonstration of how the two-stage

approach can be used to learn structure in network data and

potentially identify cyber attacks. The first step is to con-

struct a set of variables of interest. Ideally we want this

set (of size p) to be as large as possible, whilst maintaining

the normality assumptions required by likelihood function

L(Xt,St). There are many variables we might consider

aggregating against: source-destination, packet-type, proto-

col, packet size, etc. In this example, we use eight variables

looking at both the protocol and size of packets. Variables

are constructed by dis-aggregating packet flow at the edge of

a local area network using the Wireshark packet inspection

program. The data we use originates from attack simulations

performed by DARPA to mimic cyber-attacks on a US air-

force base [25]. We use data from the morning of Friday

in week 7 which contains a so-called SYN-flood Denial of

Service (DoS) attack.

Internet traffic is generally non-Gaussian as seen in Fig.

(4), this may invalidate our methodology which is designed

with Gaussian distributions in mind. To combat this we in-

stead study the traffic as an auto-regressive process with a

multivariate Gaussian noise term, such that yt = yt−1 + ǫt

where ǫt ∼ (0,N (0, (Θt)−1).

In order to extract correlations within the data we first

look to find the prominent correlation structure using the in-

dependent graph estimates of (1)—this allows us to set λG =
0.1. We then estimate the variation in this subset of edges

via a smoothed solution using (2) with parameters λ∇ =
1, λG = 5 and w = 10 selected based on the timescale of

typical DoS threats (>1 hour). Finally we estimate change-

points through the group lasso method of (3); we specify more

changepoints than are known to exist allowing for false posi-

tives we set K = 8.

Fig. 4. QQ-Plots comparing best-fit Gaussian (red) and

z-scored network traffic for packets between 90-120 bytes

(Left) and differenced traffic (Right).
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Fig. 5. Changepoints (vertical black lines) successfully iden-

tifying a DoS attack and recovered graph structure within net-

work data. Variables identified in the graph are created ac-

cording to packet protocol; 1 - (UDP), 2 - (IP), 3 - (HTTP),

4 - (SYN), and packet size (bytes); 5 - (<60), 6- (60-90), 7 -

(90-120), 8 - (120-150).

5. CONCLUSION

We have presented a two-stage method for learning dynamic

GGM alongside changepoints in the graphical structure. This

method, based on two-stage regularisation has comparable

computational efficiency with existing dynamic programming

based methods. One computational limitation of the method

is the need for a subsequent optimisation step (3). It may be

possible to incorporate a fused group ℓ2 penalty within (2)

performing joint optimisation to enhance computational per-

formance.

From an application point of view we have demonstrated

how relational structures can be uncovered when modeling

network traffic data which may have potential uses to build

improved attack filters for IDS. However, there is not neces-

sarily any clear reason that the largest changepoints we detect

should be correlated with attacks; many cyber attacks do not

even contribute to network traffic. Future work may look at

learning an association between attacks and particular edges

or recovered structure, this could act to reduce false positives,

effectively using this work as an unsupervised feature extrac-

tion method.

2706



6. REFERENCES

[1] Veronica Montes De Oca, Daniel R. Jeske, Qi Zhang,

Carlos Rendon, and Mazda Marvasti, “A cusum change-

point detection algorithm for non-stationary sequences

with application to data network surveillance,” Journal

of Systems and Software, vol. 83, no. 7, pp. 1288–1297,

July 2010.

[2] AS Polunchenko, “Nearly optimal change-point detec-

tion with an application to cybersecurity,” Sequential

. . . , vol. 1, no. x, pp. 1–23, 2012.
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