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Abstract—The exploitation of slight imperfections of transmit-
ters’ hardware for identification of wireless devices has recently
emerged as an effective method for security enhancement in
wireless access networks. Previously, we introduced a model-
based approach for device identification based on the imperfec-
tions of two main wireless transmitter components: the digital-
to-analog converter and the power amplifier. Here, motivated by
applications with transmit power control mechanisms, we analyze
the degree to which a device can be identified from the unique,
power mode independent characteristics of a third main com-
ponent: the RF oscillator. The model-based device identification
method introduced here allows for effective device identification
even from short time records at relatively low signal-to-noise
ratios when exploiting imperfections of commercially used RF
oscillators.

Index Terms—radiometric identification, wireless security, pro-
cess variations, RF oscillators

I. INTRODUCTION

A significant increase in the number of crimes, such as
distribution of contraband music and video, identity theft, in-
tellectual property theft, fraud etc., committed via the Internet,
as well as the increase of financial losses caused by these
crimes, have been reported in recent years [1]. Techniques
exploiting information available at the physical layer have
recently been considered for security level enhancement in
wireless systems. Exploitation of imperfections of hardware
caused by inaccuracies of production processes is especially
attractive for identification purposes, because it makes iden-
tification independent from the location of wireless users, as
opposed to the methods based on channel properties [2], [3],
[4], [5] that require a strong assumption on users’ stationarity.
Physical layer identification techniques that exploit hardware
imperfections can generally be divided into two groups: tran-
sient signal techniques [6], [7], [8], [9] and steady state signal
techniques [10], [11], [12], [13]. In [10], [11] we considered
steady state signal techniques for security enhancement in
wireless Internet access systems and introduced a model-based
approach for wireless device identification. This approach
falls in the field of RF fingerprinting based on hardware
imperfections; however, in contrast to the prior empirical
work (e.g.[12]), it is based on statistical models amenable for
analysis.

In [11] we considered two components of the transmitter
chain: the digital-to-analog-converter (DAC) and the power
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Fig. 1. A basic PLL block diagram.

amplifier (PA). Here we analyze the degree to which a wire-
less device can be correctly identified from measurable non-
idealities of RF oscillators, employed by wireless transmitters.
Work presented here is motivated by the fact that, in contrast
to the PAs, which in transmit power controlled applications
might be switching modes over time, characteristics of the RF
oscillators are power level independent, and thus can be used
as unique device tags in systems with implemented transmit
power control mechanisms.

The main practical application of the identification method
proposed in this work is testing devices from a pool of
suspects in order to decide which one was most likely used
while the crime was committed, when high-layer identification
mechanisms fail or are not implemented. The only print from
the crime scene is a signature captured from the wireless
transmitter by an access point or cell tower. Having the
signature and a group of devices that have been potentially
used to commit the crime, the proposed method can be used
to successfully select the offender’s device.

In mobile devices RF oscillators are typically implemented
as phased-locked-loops (PLLs). Fig. 1 shows a basic block
diagram of a PLL. An ideal PLL would generate a sinusoidal
oscillation at a carrier frequency f0. Instead, in practice, the
PLL generates a signal of the form:

y(t) = cos (2π(f0 + ∆(t))t+ Θ(t)) (1)

where ∆(t) is the frequency offset and Θ(t) is the complex
phase noise process. The frequency offset ∆(t) is specific to
a given PLL chip, however, it is sensitive to chip temper-
ature changes. Moreover it can be easily compromised by
sophisticated cyber-criminals [14] via multiplication of the
digital symbols with a time-varying factor, in a manner similar
to receivers’ digital frequency compensation (Ch. 6 [15]).
Therefore this work concentrates on the extraction of devices’
RF fingerprints based on differences in the characteristics of
the PLL’s phase noise, which is caused by variations in the
components that comprise the PLL circuit and cannot be mod-
ified by the user without causing performance impairments.
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II. PLL PHASE NOISE MODEL AND RF FINGERPRINT
EXTRACTION

For the case of a free running (open loop) RF oscillator Θ(t)
becomes a Wiener process as t→∞ [16]. The phase noise is
then characterized with a single quality parameter that deter-
mines the width of the oscillator’s spectrum, which exhibits a
Lorenzian shape [17]. For PLLs, the analytic description of the
phase noise is more complex. In [18], the PLL is modeled with
a set of stochastic differential equations and the autocorrelation
of the phase noise corrupted PLL’s output y(t) is found as

Ry(τ) =

∞∑
i=−∞

XiX
∗
i exp(−jiω0τ)·

· exp

[
−0.5ω2

0i
2

[
cxtl|τ |+ 2

n∑
l=1

(νl + µl) [1− exp(−λl|τ |)]

]]
,

(2)

where Xi are coefficients of the Fourier series expansion of the
PLL crystal’s reference signal oscillating with nominal angular
frequency ω0, cxtl is a quality parameter of the crystal oscil-
lator, and λl, νl and µl, l = 1, 2, . . . , n, are parameters that
depend on entries of matrices defining the set of differential
stochastic equations modeling the PLL (Appendix of [18]). For
the 1st order charge pump loop filter with cut-off frequency
ωcp and transfer function s+ωcp

s , n = 2 and we find µl and
νl, l = 1, 2:

µ1 = cxtl
−λ2(λ1 − ωcp)
ωcp(λ1 − λ2)λ1
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(3)
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Typically λ1 = λ∗2, which further implies that µ1 = µ∗2 and
ν1 = ν∗2 . If the reference signal is generated with a high quality
crystal oscillator, its Fourier series expansion can be accurately
approximated with a single non-zero element. This allows for
simplification of (2). Let p = µ1 + ν1 and λ = λ1, then

Ry(τ) = exp(−jω0τ) · exp
[
−0.5ω2

0cxtl|τ |
]
·

· exp
[
−ω2

0

[
p · (1− exp[−λ|τ |]) + p∗ ·

(
1− exp[−λ∗|τ |]

)]]
=

= exp(−jω0τ) · exp
[
−0.5ω2

0cxtl|τ |
]
· exp

[
−2ω2

0 [<{p}−

exp [−<{λ}|τ |] · (<{p} cos(={λ}|τ |) + ={p} sin(={λ}|τ |))]] ,
(5)

Eq. (5) shows multiple factors that determine the dependence
of the envelope of the autocorrelation function on the PLL
parameters. The exponential decay factor exp

[
−0.5ω2

0cxtl|τ |
]

depends on the quality of the crystal oscillator. The de-
pendence of the envelope of Ry(τ) on other PLL com-
ponents, which we want to use for user identification, is
most pronounced at small values of |τ |, for which the
exp

[
−0.5ω2

0cxtl|τ |
]

factor is close to 1, and hence can be
neglected in the signature extraction process. The envelope

ERy (τ) of the autocorrelation function for small values of |τ |
can thus be expressed as
ERy (τ) = exp

[
−2ω2

0 [<{p} − exp [−<{λ}|τ |] ·
· (<{p} cos(={λ}|τ |) + ={p} sin(={λ}|τ |))]] =

= exp

[
−2ω2

0

[
<{p} − exp [−<{λ}|τ |] ·

√
<{p}2 + ={p}2·

· cos

(
={λ}|τ |+ sgn (={λ}) · arccos

(
<{p}√

<{p}2 + ={p}2

))]]
,

(6)

which, with ERy (0) = 1, becomes

ERy (τ) = exp
[
−2ω2

0<{p} (1− exp{−<{λ}|τ |} · cos (={λ}|τ |))
]

(7)
The characteristics of the envelope of the autocorrelation

function at small |τ | can be used as a unique feature identifying
a given oscillator, and the parameter vector

F = [<{p} <{λ} ={λ}] (8)

can be used as a unique fingerprint that directly depends on
the values of the components comprising the PLL circuit.

III. IDENTIFICATION METHOD

A. Distribution of the Envelope of the Sample Estimate of the
Autocorrelation Function of the PLL Output

Consider an output y(t) of the PLL, sampled with the
frequency fs. A sample estimate of the autocorrelation of
the random process y(t) calculated based on a record y[n],
n = 1, . . . , N can be obtained as

R̂y[m] =
1

(N −m)

N−k∑
n=1

y[n]y[n+m] (9)

If N goes to infinity, then the joint distribution of any finite
set of elements of

(
R̂y[m]/R̂y[0]− ρm

)
becomes jointly nor-

mally distributed with the covariance matrix W , the elements
of which are defined with (1.4) [19]
Assume access to the noise-corrupted PLL output records
y[n] = p[n]+η[n] undersampled with sampling rate fs. R̂y[m],
calculated from these undersampled records, oscillates with
frequency f = min

N
(f0 −Nfs), which because of the varia-

tions of f0 and ∆(t) from (1) varies among the devices and
over time. Wireless devices could potentially be identified by
comparing vectors of envelopes of sample estimates of the au-
tocorrelation functions ER̂y [m] at small values of |m|. Vectors
ER̂y are normally distributed with covariance matrix elements
given in (1.4) [19]. Because (7) was derived for small values of
the time shift, ERy (∞) = exp

[
−2ω2

0<{p}
]
, where p is device

dependent. As a simplification, to calculate the covariance
matrices with the infinite sums from (1.4) [19], we subtract
the offset ERy (∞), and, for the white noise corrupted PLL
output records, obtain ρm = cov(y(t), y(t + m))/var(y(t))
[19]

ρm =
ERy (|m · Ts|)− ERy (∞) + σ2

η · δ[|m · Ts|]
1− ERy (∞) + σ2

η

, (10)

2699



with a unit impulse δ[n], ERy from (7), and σ2
η = 10NPNR/10,

where NPNR is the ratio of the power of the white noise to
that of the phase noise

NPNR = 10 log10(Pη/Pp). (11)
B. Optimal Hypothesis Test

Consider first a two-device identification scenario. After the
PLL output record has been captured from the device on the
crime scene, the two hypotheses of the identification test are
H1: device 1 is the transmitting device; H2: device 2 is the
transmitting device. The likelihood ratio test is

Λ =

pE
R̂y
|H1

(ER̂y |H1)

pE
R̂y
|H2

(ER̂y |H2)

H1

≷
H2

ς (12)

For equally probable hypotheses the threshold ς = 1 mini-
mizes the risk of the test (12) (p.26 Section 2.2 [20]). With
jointly Gaussian distributed vectors ER̂y ,

p(ER̂y |Hk) =
1

(2π)M/2 det{WHk}1/2
×

× exp

{
−

1

2

(
ER̂y − ER̂y,Hk

)H
W−1
Hk

(
ER̂y − ER̂y,Hk

)}
, (13)

where ER̂y,Hk
are envelopes of accurate estimates of the

autocorrelation functions obtained from the devices from the
pool of suspects. The binary decision rule becomes

ln
(
det{WH1

}
)
+
(
ER̂y − ER̂y,H1

)H
W
−1
H1

(
ER̂y − ER̂y,H1

) H2

≷
H1

ln
(
det{WH2

}
)
+
(
ER̂y − ER̂y,H2

)H
W
−1
H2

(
ER̂y − ER̂y,H2

)
(14)

The two-device scenario can easily be generalized to a K-
device scenario, for which the identified device k is the device
for which the likelihood function takes its maximal value:

kopt = max
k=1,...,K

p(Ry |Hk) = min
k=1,...,K

ln
(
det{WHk}

)
+

+

(
ER̂y − ER̂y,Hk

)H
W−1
Hk

(
ER̂y − ER̂y,Hk

)
.

(15)

The power levels of the phase noise are much below the
carrier power even for inexpensive commercially used PLLs
(e.g. -81dBc/Hz at 1kHz offset from the carrier for ADF4360-
1 [21]). Thus the measurement noise dominates the phase
noise at common SNR values. For the discrete additive white
Gaussian noise (AWGN) random process, ρm from (10) is
dominated by the unit impulse and the covariance matrix W
becomes an identity matrix. As will be shown in Section IV,
for practical SNR levels the approximation of W from (14)
and (15) with the identity matrix does not cause a noticeable
degradation in identification performance. This allows for
significant simplification of the decision rules (14) and (15).
Respectively, for the binary scenario,

||ER̂y − ER̂y,H1

||2
H2

≷
H1

||ER̂y − ER̂y,H2

||2, (16)

and, for the K-ary scenario,

kopt = min
k=1,...,K

||ER̂y − ER̂y,Hk
||2. (17)

C. Practical Identification Algorithm
One possible way to obtain access to the undersampled

PLL output in practice is to utilize (at least one) carrier phase
recovery pilot tone, which for accurate extraction of the phase
noise needs to be sufficiently separated from the data tones
[22]. Although not present in current standards, security is
becoming a critical issue in mobile radio applications, and
it is reasonable to understand the potential benefit if future
communication standards provide additional tones for security
level enhancements. In fact the relative expense required
decreases with the increase of bandwidth utilized by individual
users, and such an increase has been observed in recent years.

The autocorrelation function estimates (9) are calculated
based on individual signal records captured from the devices
over time. From all samples of the autocorrelation function
estimate, only for a subset of samples do we have ER̂y ≈ R̂y
(samples close to the local extrema of the autocorrelation
function). With a fixed sampling rate, because of variations
of f0 among devices, as well as because of the time-varying
frequency offset ∆(t) from (1), the subsets of samples for
which ER̂y ≈ R̂y can be different among the devices and vary
over time. Thus to obtain accurate estimates of the fingerprint
F (8) for each device from the pool of suspects, the envelopes
of the estimates at small values of |τ | are matched to the
model (7) through exhaustive search of the values of (8) for
each record available from a given device and averaged over
these records. To identify the device from the crime scene,
the estimate of the envelope of the autocorrelation function is
calculated based on the full captured record, and p(ER̂y |Hk)

are calculated for each hypothesis with ER̂y,Hk
reconstructed

from the fingerprint of device k from the pool of suspects and
the model (7).

IV. MEASUREMENTS AND NUMERICAL RESULTS

The performance of the proposed identification method is
considered here with simulations and hardware measurements.
Most important is Section IV-B, where PLL output signals
were captured from commercially used PLLs and the perfor-
mance of the identification method was analyzed at 15dB and
35dB SNR with records of length 200ms.

A. Synthetic Oscillators
Pairs of phase noise paths pk[n], k = 1, 2 were generated

by numerically solving a discrete-time version of the set of
equations modeling a 1st order, charge pump PLL ((8), (11)
in [23]) for ∆t = 0.04µs (sampling rate fs = 25Msps). The
parameters used to generate each of the paths were generated
randomly by multiplying nominal values of the parameters
defined in [23]: quality parameters, of respectively, the volt-
age controlled and crystal oscillators cV CO = 15 · 10−19

and cxtl = 10−25; cut-off frequency of the PLL structure
ωGPLL = 2π · 104 and cut-off frequency of the charge pump
ωcp = 2π·16·103, with a factor (1+|κ|), where κ ∼ N (0, σκ).
The third path (potential capture from the crime scene) was
then generated using the first set of parameters. White Gaus-
sian noise with elements η[n] ∼ N (0, ση) was then added
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Fig. 2. Probability of error of the binary hypothesis test (14) and (16) averaged
over 1000 trials for NPNR = 10dB and for capture length lc = 100ms
as a function of the standard deviation σκ used to artificially generate the
oscillator pairs (top); for the standard deviation σκ = 0.2 used to artificially
generate the oscillator pairs and for capture length lc = 100ms as a function
of the NPNR (middle); and for the standard deviation σκ = 0.2 used to
artificially generate the oscillator pairs and for NPNR = 10dB as a function
the capture length (bottom).

to the three phase noise paths and autocorrelation functions
were estimated from the white noise corrupted phase noise
paths yk[n] = pk[n] + η[n]. Fig. 2 shows the probability of
error Perr of the binary hypothesis test (14) and (16) averaged
over 1000 trials as a function of the standard deviation σκ used
to artificially generate the oscillator pairs (top); as a function
of the additive white noise power to the phase noise power
ratio NPNR (11) (middle); and as a function the capture
length (bottom). The region of the autocorrelation function
employed was τ ∈ (0.01, 0.15)ms. Covariance matrices WHk
from (14) were calculated with (7), (1.4) [19], (10) with the
assumption of known oscillators’ parameters. Plots from Fig.
2 show a potential for effective device identification based of
oscillator non-idealities, even if only a single capture from the
devices building the pool of suspects and from the crime scene
is available; however, the variation of component values was
generated quite artificially; hence, hardware measurements are
critical. These are provided in the next section.

B. Measured Oscillators
After the qualitative performance analysis from Section

IV-A, the effectiveness of the proposed technique is analyzed
for the case of commercially employed PLLs. The most
challenging identification scenario, when the PLL’s that need
to be told apart are of the same model and from the same
manufacturer, is considered. Eight Analog Devices ADF4360-
1 [21] oscillators, oscillating at f0 = 2.4GHz, were measured
on a Tektronix DPO71254B oscilloscope. 50 output records
of length 200ms sampled with fs = 62.5Msps were captured
for each of the PLLs. Table I shows Perr averaged over 250
trials for all possible pairs from the group of 8 measured
oscillators for the test (16) at SNR = 15dB (lower left, below

PLL # 1 2 3 4 5 6 7 8
1 - 0.000 0.000 0.000 0.000 0.000 0.016 0.000

2 0.000 - 0.000 0.164 0.000 0.000 0.000 0.000

3 0.000 0.000 - 0.000 0.216 0.000 0.000 0.000

4 0.000 0.228 0.000 - 0.00 0.00 0.00 0.00

5 0.000 0.000 0.228 0.000 - 0.000 0.000 0.020

6 0.000 0.000 0.000 0.000 0.000 - 0.000 0.008

7 0.008 0.000 0.000 0.000 0.000 0.000 - 0.000

8 0.000 0.000 0.000 0.000 0.028 0.036 0.000 -

TABLE I
Perr AVERAGED OVER 250 TRIALS FOR ALL POSSIBLE PAIRS FROM THE

GROUP OF 8 MEASURED OSCILLATORS FOR THE TEST (16) AT
SNR = 15DB (LOWER LEFT, BELOW THE DIAGONAL) AND AT

SNR = 35DB (UPPER RIGHT, ABOVE THE DIAGONAL), WHEN ALL 50
CAPTURED RECORDS WERE USED TO EXTRACT THE FINGERPRINTS OF THE

DEVICES FROM THE POOL OF SUSPECTS, AND A SINGLE RECORD FROM
THE CRIME SCENE, RANDOMLY CHOSEN FROM THE GROUP OF ALL 50

CAPTURED RECORDS, WAS USED FOR IDENTIFICATION.

the diagonal) and at SNR = 35 dB (upper right, above the
diagonal), when all 50 captured records were used to extract
the fingerprints (8), and a single record, randomly chosen
from the group of all 50 captured records, was used as a
capture from the crime scene. The region of the autocorrelation
function employed was τ ∈ (0, 0.075)ms. Perr values from
Table I at SNR = 15dB are similar to values from Table I
from [11]. In contrast to [11] however, an increase of the SNR
did not bring significant performance improvement, as error
floors emerged for some pairs of oscillators. Based on conver-
sations with law enforcement authorities, error probabilities
from Table I justify application of the proposed identification
method for establishing probable cause and make it attractive
for cyber-crime investigations. All 8 PLLs were re-measured 3
months after the original measurements were taken. Almost no
change of the identification performance was observed when
the measurement sets used for fingerprint extraction and for
criminal identification were 3 months apart.

V. CONCLUSIONS AND FUTURE WORK

In this paper we analyzed the degree to which a wireless
device can be identified from unique characteristics of the
phase noise of the transmitter’s RF oscillator. Measurements
of commercially used chips indicate that oscillators can be
identified even at low SNRs and with very short observed
sequences to the accuracy required to establish probable
cause. The extension to higher-order PLL models that more
accurately match characteristic of commercial PLLs could
lead to improvement of the identification performance. Among
the topics for future research are the consideration of the
dependence of the characteristics of the phase noise on the
carrier frequency, as well as environmental conditions. While
the first is not critical, as the access point can assign devices
that need to be identified to arbitrary frequency channels,
the latter should be an important consideration for further
refinement of the identification methods. To further establish
the feasibility of the proposed method, the extension of the
measurements to a larger number of units, also from different
vendors, is foreseen.
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