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ABSTRACT

The identification of the camera that has acquired a specific im-
age can be performed via several device-related footprints. Among
these, it is possible to look for the traces left by the adopted color
demosaicing strategy, which varies according to the camera model
and vendor.

The paper presents an identification strategy that re-processes
the analyzed image with a set of distinctive CFA interpolation al-
gorithms (eigenalgorithms) and, according to the correlation of the
output with the original image, builds a set of features that permits
identifying the algorithm. The proposed solution performs well with
respect to other state-of-the-art solutions also when the analyzed im-
age is severely compressed.

Index Terms— demosaicing identification, CFA interpolation,
Bayer mask, device identification, image forensics.

1. INTRODUCTION

The identification of the acquisition device is an important clue in the
authentication and validation of multimedia content such as images
and videos [1].

As for images, several different footprints can be considered as
revealing clues useful for the device identification [2]. For example,
Photo Response Non Uniformity (PRNU) noise is one of the dis-
tinctive feature of the CCD acquisition matrix employed in a camera
and, when compression distortion is limited, it permits identifying
the originating device [3]. Since most of the images are available
in compressed format, several coding artifacts can be detected in an
image and used to identify the specific codec implementation since
many non-normative aspects are implemented differently by each
vendor [4].

In this paper, we focus on the specific Color Filter Array (CFA)
interpolation strategy (also known as demosaicing [5]) employed by
the camera [6]. In most cameras it is possible to acquire a single
color component per pixel, and therefore, color samples are posi-
tioned according to a specific acquisition mask (Bayer mask). The
missing colors are generated via an interpolation of this mask (be-
fore compressing the image), and each camera vendor has developed
its own algorithms. Therefore, identifying the demosaicing strategy
is an important task in image forensics [7].

Among the possible identification approaches available in the
literature [8, 9, 4, 10, 11, ?], some of the proposed blind tech-
niques rely on the fact that some operators are “idempotent” [12].
This means that, if an operator was used to process the signal un-
der analysis, reprocessing the signal with the same operator will
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Fig. 1. Processing and analysis chain using idempotence property.

generate output data that proves to be highly-correlated with the
analyzed data themselves [13]. Unfortunately, the identification of
the demosaicing strategy via idempotence is severely conditioned
by image compression level (as it will be shown in Section 4). The
performance dramatically collapses whenever lossy compression
(e.g., using JPEG) is included in the processing chain. Moreover,
idempotence-based detectors imply that the investigated method is
included in the analysis set, i.e., an implementation of the demo-
saicing strategy to be identified is available to the analyst. This
assumption might not be true in practice.

In this paper, we try to identify the demosaicing strategy by
analyzing the interpolated image via eigenalgorithms [14]. The
analyzed image is re-processed with a set of distinctive strate-
gies (called eigenalgorithms), which enable to characterize it in an
“eigen-correlation” space. The position assumed in the space is a
revealing trace of the specific demosaicing approach. The proposed
solution permits a correct identification of the interpolation strategy
even in the presence of lossy JPEG compression, and does not imply
that the algorithm to be identified must be available to the analyst.
Experimental results show that the proposed analysis technique can
be applied to images taken by consumer cameras and leads to their
correct identification. In the following, Section 2 describes the idem-
potence property, while Section 3 extends this concept introducing
eigenalgorithms. Section 4 reports the detection performance and
Section 5 draws the final conclusions.

2. THE IDEMPOTENCE PRINCIPLE

A conceptual illustration of the proposed identification scheme based
on the idempotent property is presented in Fig. 1. Let I1 denote the
image under analysis, which is the result of processing the acquired
color samples with the unknown algorithm X . The analyst has a set
of processing units Y ∈ A at hand. For each of them, he generates
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the output data I2 by resampling I1 according to the Bayer mask and
interpolating it with algorithm Y .

The correlation between I2 and I1 is a distinctive feature of the
unknown algorithm X . In this research work, it is measured via the
PSNR value between pixels of I1 and I2. Assuming that I2 was
obtained using the algorithm Y , the PSNR value between I1 and I2
is pY .

The demosaicing strategy that leads to the highest PSNR is iden-
tified with the unknown strategy X , i.e.,

X̂ = argmax
Y ∈A

pY (1)

In the literature, the idempotent property has been successfully ex-
ploited for the identification of the quantizer [15], the traces left by
JPEG compression antiforensics [16], and the adopted video coding
architecture [12, 17].

Experimental results in Section 4 will show that when dealing
with CA interpolation strategy detection, the performance is severely
conditioned by compression artifacts. Moreover, the set A must in-
clude strategy X to be identified; otherwise, it is only possible to
identify the algorithm inA that is the closest to X (but does not nec-
essarily correspond to X). The proposed method, presented in the
next section, is able to circumvent these shortcomings.

3. INTERPOLATION STRATEGY IDENTIFICATION VIA
EIGENALGORITHMS

Experimental data shows that some of the strategies inA present dif-
ferent correlation levels with the unknown strategy X . This suggests
the idea that it is possible to characterize the unknown interpolation
algorithm to be identified via the PSNR values obtained by an ad-
equate set A of demosaicing solutions (which does not necessarily
include the unknown algorithm X). The strategy in this set will be
called eigenalgorithms (similarly to eigenvector or eigenfunctions)
[14].

Given the set of algorithms in Table 1, Fig. 2 reports the PSNR
values obtained by processing a set of images I (which has been
demosaiced with strategy X) with algorithms A, B, and C. The pos-
sible interpolators X are reported in Table 1. Results are plotted in a
couple of graph displaying pA vs. pB and pB vs. pC . Note that since
no compression was performed, pX → +∞ (with X = A,B,C)
since the mentioned strategies do not alter the acquired reference
color samples. In order to allow a better visualization and computa-
tion, values pX = +∞ are replaced with pX = 60 dB. It is possible
to notice that points

p = (pA, pB , pC) (2)

related to a specific algorithm X occupy a definite region RX in the
three-dimensional feature space (for the sake of clarity, this feature
space is split into two 2-D plots in Fig. 2).

Similar results were obtained when the image was compressed.1

Figure 3 reports the points (pA, pB , pC) obtained from JPEG images
coded with QF=85.

In the following, it will be explained how to characterize the
decision regions RX and determine the interpolation strategy given
the input vector p. More precisely, we distinguished two experimen-
tal settings. A first setting consists in a controlled scenario where
the whole chain (acquisition,demosaicing,compression) is simulated
and all the processing steps are known. A second setting considers
images taken by different commercial cameras. In the first case re-
gions of p that characterize each algorithm are more regular, while

1In this work, we will consider JPEG compression.
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Fig. 2. Diagrams of points p = (pA, pB) and p = (pC , pB) for
different demosaicing algorithms. Points labelled pts X denotes
values p related to unknown algorithm X . Points belonging to dif-
ferent algorithms cluster in regions RX . a) Points p = (pA, pB) b)
Points p = (pC , pB).
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Fig. 3. Diagrams of points p = (pA, pB) and p = (pC , pB) for
different demosaicing algorithms on compressed images. For the
sake of conciseness, the convention of notation is the same of Fig. 2.
The JPEG quality factor of images is 85. a) Points p = (pA, pB) b)
Points p = (pC , pB).

in the latter, regions have more complex shapes. This fact is mainly
due to the influence of other processing units (like white-balancing,
gamma correction, compression, rate-distortion optimization, etc..)
on the final images. Therefore, the regions RX can be correctly
characterized by training a set of classifiers based on a Support Vec-
tor Machine (SVM) [18].

The vectors p related to a specific image is fed to a set of bi-
nary SVM classifiers that report whether the processed image has to
be related to a specific strategy Y , i.e., each classifier tries to state
whether p refers to Y ∈ A or not. Each classifier (associated to the
algorithm/camera Y ) outputs a real value wY ≷ 0, whose absolute
value corresponds to the distance from the separating hyperplane.

Combining the outputs of the different classifiers in the variables

WY = wY −
∑

Z∈A;Z 6=Y

wZ , (3)

where signs are combined according to the algorithm we are consid-
ering, it is possible to estimate the adopted algorithm via the maxi-
mum

X̂ = argmax
Y ∈A

WY . (4)
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Fig. 4. Fourier transform of image peppers sampled and interpolated with different algorithms. Graphs report |DFT (I1)|dB averaged
along columns (a) and rows(b), together with |DFT (I1)|dB − |DFT (I2)|dB (with I1 = A) averaged along columns (c) and rows (d).
Frequency f is normalized.

A possible explanation for this is provided by Fig. 4, which
reports the absolute coefficient values of DFT-transformed image
peppers averaged along the columns (vertical frequencies) and
along the rows (horizontal frequencies). The image has been sam-
pled using RGGB Bayer mask and reinterpolated with algorithms
A,B,E. It is possible to notice that the different algorithms differs
mostly in processing the input signal in the transient band between
low and high frequencies (approximately between 0.07 and 0.1).
Low frequency information can be easily estimated by all the pro-
posed solutions. High frequency components prove to be more dif-
ficult to reconstruct and different interpolation strategies lead to dif-
ferent amounts of artifacts (e.g., aliasing, rainbows, etc.). In the re-
ported figure, this differentiation is quite evident in the vertical in-
terpolation (Fig. 4b) since the spectra of the three signals are quite
separated. As a matter of fact. these differences provide some foot-
prints for the specific interpolation strategy.

These can be acquired by resampling and reinterpolating the im-
age I1, followed by evaluating the differences with respect to the
original data (as described before). From Fig. 4 (c) and (d), it is pos-
sible to notice that when the process interpolated with A is repro-
cessed with E the difference between absolute frequency response
is quite close to 1 dB. In case, the process is reprocessed with B the
average difference is lower.

4. EXPERIMENTAL RESULTS

In a first set of experiments, we considered the identification of
known demosaicing algorithms. To this purpose, images from the
UCID dataset [19] were sampled, interpolated, and compressed with
different quality factors. In this work we considered the demosaicing
strategies reported in Table 1. These strategies were selected since
they are clearly described in the literature, results are reproducible,
and their performance proves to be quite satisfactory. Moreover,
they present a good degree of diversity that makes the different pY
values more informative with respect to using similar interpolation
strategies. This fact was further validated by an extensive set of ex-
periments on the UCID dataset involving a wider set of demosaicing
algorithms. Results are omitted here for the sake of conciseness.

The adopted JPEG codec is the one implemented in MATLAB.
On the coded images we tested the proposed identification strategy, a
detector based on idempotence (i.e., using eq. (1) under the assump-
tion that all the demosaicing strategies are available to the analyst)
and that proposed by Gao et al. in [20].

In order to evaluate their efficiencies, we tested the detectors in
two scenarios. A first scenario considers a set of non compressed
images [19], where color components are sampled according to a

Table 1. Demosaicing strategies
Letter A B C D E

AlgorithmDLMMSE
Alternating
Projections

hold bilinear Self-similarity
Driven

Reference [21] [22] [23]

RGGB Bayer mask, interpolated using one of the algorithms in Ta-
ble 1, and eventually, compressed (see Fig. 1).

Similarly to the approaches in [24, 20], for every image we se-
lect an area of 352× 288 pixels (CIF resolution) where the analysis
is performed. In our analysis we skipped those blocks with too sta-
tionary behavior or too much varying since the outputs of different
demosaicing strategy is not discriminative in the first case or sig-
nificant in the latter (as done in [24]). As a matter of fact, we pro-
cess the image via a sliding window of CIF resolution computing the
average absolute gradients (vertical and horizontal) on the acquired
color samples. For every image, we select the CIF window with
the highest gradient included in the range 5 and 12. In this way it
is possible to identify those parts where the peculiarities of the dif-
ferent interpolation strategies are highlighted. Source code for this
selection is available at [25]

Classification is performed considering 3 eigenalgorithms (A =
{A,B,C}) out of the 5 strategies reported in Table 1. Experimen-
tal results have proved that in this controlled experimental setting,
3 strategies were enough to identify all 5 techniques. Note that the
implementations of algorithms D and E were not available to the
analyst. Additional results have shown that increasing the number
of cameras/algorithms to be detected imply increasing the number
of features/algorithms to be used in the generation of p. Moreover,
the outputs of the analysis algorithms A,B,C must be uncorrelated
to permit an accurate classification. In the presented results, we pro-
cessed a common set of training images with different algorithms
and we computed the correlation between the different outputs. Al-
gorithms A,B,C were selected maximizing the uncorrelation levels
between the different outputs.

Fig. 5 reports the detection accuracies for the different meth-
ods and quality factors QF . It is possible to see that the proposed
strategy is quite robust with respect to the distortion introduced by
compression. It is possible to notice that in case no strong compres-
sion is perform on the images, all the solutions perform quite well.
As the amount of coding noise increases, the performance of the
proposed solution decreases, while the strategy based on eigenalgo-
rithms keeps the detection accuracy over 70 % even for QF values
higher than 85. The improved performance of the eigenalgorithms-
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Fig. 5. Detection accuracy of different demosaicing detectors for
different quantization settings in Scenario 1.

based approach can be explained considering that the energy of the
compression noise is mainly located at high frequencies. By reinter-
polating the signal, part of this energy is removed (since the inter-
polator is generally a low pass operator) leading to a less corrupted
version of the image. This permits a more accurate detection. The
detailed confusion matrices are reported at [25].

A second set of experiments was performed considering real
cameras. To this purpose, a set of JPEG images was downloaded
from the Dresden dataset [26] as in [20]. Four central areas of
512× 512 pixels were used in this case (as described in [20]). Since
the classification outcomes is found combining the classification re-
sults of these 4 images, the average precision of the different al-
gorithms is a bit higher with respect to the first scenario (where
a single feature array was computed on the whole image). Note
also that image resolution is higher, and therefore, frequency spectra
of coding blocks proves to fit a low-pass model better than images
with smaller resolution. As a consequence, the amount of interpo-
lation noise introduced by the different analysis algorithms is lower,
leading to a more accurate identification. We downloaded images
acquired with FujiFilm, Nikon Coolpix, and Nikon D70s cameras.
The list of adopted images is available at [25]. In order to vary the
amount of compression noise applied to images, we recompressed
the decoded JPEG images with different quality factors QF s. Since
a lot of additional noise sources (derived from the applied process-
ing steps like white-balancing, gamma correction, etc.) affect the
image, experimental results showed that using vectors of 5 features
p = (pA, pB , pC , pD, pE) permits an accurate characterization.

Each feature vector p is classified via a set of SVM classifiers
(one per camera). Fig. 6 reports the detection results for the ap-
proach in [20] and the proposed one. Table 2 reports the complete
confusion matrices obtained from uncompressed images and from
images coded with QF=90, 80. All the data are available at [25].
It is possible to see that the robustness to compression is confirmed
also in this case. The accuracy is higher than 80 % with QF ≥ 85
for the eigenalgorithms-based approach, while the solution in [20]
has a lower performance when strong compression is introduced. It
is worth noticing that the performance of the algorithm in [20] is
slightly better than the proposed solution whenever no compression
is applied. This is due to the adoption of 69 feature values in place of
the 5 feature values adopted by the eigenalgorithms-based approach.
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Fig. 6. Detection accuracy of different demosaicing detectors for
different quantization settings in Scenario 2.

Table 2. Confusion matrix for strategies eigen-based/Gao et al..
Fuji CoolPix D70s

Fuji 100.00/100.00 0.00/0.00 0.00/0.00

CoolPix 25.00/0.00 75.00/100.00 0.00/0.00

D70s 0.00/8.33 0.00/8.33 100.00/83.33

No loss
Fuji CoolPix D70s

Fuji 100.00/91.67 0.00/0.00 0.00/8.33

CoolPix 33.33/25.00 66.67/41.67 0.00/33.33

D70s 0.00/8.33 0.00/0.00 100.00/91.67

QF=90
Fuji CoolPix D70s

Fuji 91.67/91.67 8.33/0.00 0.00/8.33

CoolPix 33.33/33.33 66.67/16.67 0.00/50.00

D70s 0.00/8.33 0.00/0.00 100.00/91.67

QF=85

5. CONCLUSIONS

The paper presented a new strategy for the identification of the CFA
interpolation strategy on static images that relies on reprocessing
the analyzed image with some known demosaicing strategies, called
“eigenalgorithms”. The correlation between the obtained output and
the original image under analysis permits identifying the original
interpolation strategy with a nice accuracy (> 80 %) even when
the signal has been corrupted by compression noise. Future work
will be devoted to investigate the influence of the number of fea-
tures/eigenalgorithms on the detection performance. Moreover, we
are planning to extend the approach to the identification of a wider
set of algorithms in the presence of different noise sources. Pre-
liminary results have shown that it is also possible to reverse the
approach using the eigenalgorithms to generate forged images with
consistent CFA-related footprints. Implementing this possibility, it
will be possible to design antiforensic strategies for the synthesis of
demosaicing algorithms that could be used to fool CFA-based cam-
era detectors.
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